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Abstract

This paper presents an overview of the physical models for computational fluid dynamic (CFD) predictions of multiphase flows. The
governing equations and closure models are derived and presented for fluid—solid flows and fluid—fluid flows, both in an Eulerian and a
Lagrangian framework. Some results obtained with these equations are presented. Finally, the capabilities and limitations of multiphase
CFD are discussed.
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1. Introduction latory behaviour, requiring costly transient solution al-
gorithms. Almost all CFD codes apply extensions of
Multiphase flows are encountered in many processesinin-  single-phase solving procedures, leading to diffusive or
dustrial operations. Numerous examples can be found inthe  unstable solutions, and require very short time-steps, or
chemical, petroleum, pharmaceutical, agricultural, biochem- CFL numbers.
ical, food, electronic, and power-generation industries. Due
to the inherent complexity of multiphase flows, from a phys-
ical as well a numerical point of view, “general” applicable
computational fluid dynamics (CFD) codes are non-existent.
The reasons for the lack of fundamental knowledge on mul-
tiphase flows are three-fold:

In spite of the major difficulties mentioned above, signif-
icant progress has been made in various areas of multiphase
flow CFD. In their famous article from 1967, Anderson and
Jackson[1] derive the continuum equations of motion for
gas—particle flow. Garg and co-workd3] perform im-
pressive computations based upon these governing equa-
(1) Multiphase flow is a very complex physical phenomenon tions, obtaining bubble behaviour in a particle bed. Later,

where many flow types can occur (gas—solid, gas—liquid, many authors (for instanc¢4—20] improve the constitu-
liquid—liquid, etc.) and within each flow type several tive models and/or perform simulations for various gas—solid
possible flow regimes can exist (annular flow, jet flow, flows.

slug flow, bubbly flow, etc.). In 1975, Ishii[21] derives multiphase fluid—fluid govern-

(2) The complex physical laws and mathematical treatment ing equations from first principles, going through the details
of phenomena occurring in the presence of the two of the derivation in great detail. The inherent assumptions
phases (interface dynamics, coalescence, break-up, dragef this derivation are slightly different from the assump-
...) are still largely undeveloped. For example, to date tions applied by Anderson and Jackgaih which constrain
there is still no agreement on the governing equations. the types of multiphase flow to which they can be applied.
In addition, proposed constitutive models are empirical Ishii [21] also gives appropriate closure models for various
but often lack experimental validation for the conditions gas—liquid flow conditions.
they are applied under. Up till the early 1980s, most computational models for

(3) The numerics for solving the governing equations and multiphase flow on an application level describe both the
closure laws of multiphase flows are extremely com- continuous phase and the dispersed phase by a so-called Eu-
plex. Very often multiphase flows show inherent oscil- lerian model. In these models the dispersed phase, like the

continuous phase, is described as a continuous fluid with ap-

"+ Corresponding author. propriate closures_. Hence, one calculates only the average
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Nomenclature

acceleration (m3?)
velocity (ms™1)
fluctuating velocity (ms?)
empirical coefficient
drag coefficient
diameter (m)

strain rate tensor (3)

coefficient of restitution

probability density function

fluid phase point property

force (kgms?2)

empirical material constant (NTA)
weighting function

gravitational constant (nT$)

velocity difference (m3s?t)

radial distriubtion function at particle contact
moment of inertia (kg rf)

interphase momentum exchange due to forn
and viscous drag (N$)

slip velocity (ms'1)

impulse transfer during collision (kg n$)
stiffness coefficient

interfacial area per unit volume (M)
particle mass (kg)

total interphase momentum exchange (N)s
empirical constant in frictional stress
number density

normal vector (m)

empirical constant in frictional stress
pressure (N m?)

impulse transfer between two particles
(kgms1)

relative velocity (ms?)

point in space (m)

time (s)

velocity vector (ms?)

velocity component (ms')

velocity vector (ms?)

velocity component (m3s')

volume (n¥)

ratio of terminal velocity of a group of
particles to that of an isolated particle
velocity component (ms')

position vector (m)

phase indicator

Greek letters

interphase drag constant (kgfs 1)
dissipation of granular energy (kgms 1)
angle between impact and normal
particle—particle overlap (m)

volume fraction

=)

n damping coefficient

n =3(1+e)

0 contribution due to particle collisions
e granular temperature fs2)

K solids thermal conductivity (kg ms™1)
A solids bulk viscosity (Pas)

Amfp mean free path (m)

m solids shear viscosity (Pas)

n friction coefficient

& color function

& tangential coefficient of restitution

0 density (kg n3)

o particle radius (m)

o total stress tensor (NT9)

7 viscous stress tensor (NTH)

¢ particle propertyany

1) angle of internal friction

X contribution due to particle collisions
w rotational velocity (51)

Subscripts

am added mass

b dispersed phase conglomerates (e.g. bubble)
drag drag

e external

e effective

f frictional

g gas phase

hist history

i interface

] either phase, not k

k either phase

kinetic kinetic theory

lift lift

min minimum; kick-in value

max maximum

p particle

r relative

S solids phase

turb turbulent

w wall

of modeling is discussed iBection 2 With the increase of
computational power, however, also the Lagrangian formu-
lation of the dispersed phase becomes feasible, but unfortu-
nately the amount of dispersed particles or droplets that can
be tracked is, even today and in the near future, very lim-
ited. However, specific features of gas—fluid or droplet—fluid
flow can be effectively studief®2—-25] This is discussed in
in Section 3

A separate class of methods to track interfaces in fluid—
fluid flow are volume-of-fluid (VOF), level-set or front track-
ing methods. Although the idea behind these methods is
similar, their numerical implementation, and thus behaviour,
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may differ greatly. These methods describe both fluids with Table 1

one set of equations and solve another equation for the eyo-The governing equations for fluid—fluid and fluid—solid flows

lution of the interfaces between the two fluids. The equation Continuity equations (equal for both phases)

prescribing the evolution of the interface may be formulated % V(ev) =0

in a Eulerian frameworg26—28]or in a Lagrangian frame- or _ _ '

work [29,30] or in a combination of botfi31]. These types ~ Momentum equations for fluid—solid flow

of models are described Bection 4

v =
Pyeg [Ttg +g- V"g] = —€gVP + €&V Tg+egpgg — 1

v - _
Ps€s |:37ts + vs- V”s] =—6VP+eV-1g+V-Ts

2. Eulerian—Eulerian modeling
— VPs+espsg + 1
Many authors propose governing equations without cit- Momentum equations for fluid—fluid flow

ing, or incorrectly citing, a reference for the basis or deriva-  pie; aiz +v; - Vvi] =—VP+V T +epig—1

tion of the equations they employ. There are a number of

sources for the derivation of governing equations for multi-

phase systems, but the inherent assumptions in the different

derivations constrain the types of multiphase flow to which

they can be applied. There is a lot of research on the clo-where YL ; is the interfacial area per unit voluma, is the

sure models for these governing equations. Here, we givepressure in the bulk of phage ( Py) is the average pressure

a short derivation and overview of the governing equations of phasek at the interfacez; the shear stress in the bulk,

for various types of multiphase flows. and(7y) represents the average shear stress at the interface.
Mass transfer between the phases is not assumed. The terms

av; -
0j€; [a—t]—kvj‘ij] =—€;VP+V.€Tj+€jpig+1

2.1. Fluid—fluid flows

2.1.1. Governing equations
In a fluid—fluid formulation, both phases can be averaged
over a fixed volume, cf. IshjR21]. This volume is relatively

large compared to the size of individual molecules. A phase

indicator function is introduced( (r), which is unity when

the pointr is occupied by phasg, and zero if it is not.

Averaging over this function leads to the volume fraction of

both phases,

€ = i/ X (r)dvy 1)
Viv

whereV is the averaging volume. Since both the continu-

ous and dispersed phases are liquids, they are treated in thddk =1 + (Pr)Vex

same way in the averaging process. Hence, the momentu
balances for both phases are the same,

0
AP 19 (et o)

==V (ex(P) + V - (ex(Tk)) + expxg + My (2

wherek is the phase number arM, is the interphase mo-
mentum exchange between the phases, WyithM; = 0.
The density termg; are averaged in the same way as the
velocity. The distribution of stress within both phases is im-

portant since the dispersed phase is considered as a fluid

Hence, “jump” conditions are used to determib&.. The
interphase momentum transfer is defined as

_21

— (Pxng — ny - T)
J

Lj
1 ==
= Z ?[((Pki) — Pony — (Pa)ng — ny - ((Ti) — Tk)

M;

+n - (Tii)] (3)

({(Pi) — Py)ny andny ((Tyi) — 7x) are identified by Ishi[21]
as the form drag and the viscous drag, respectively, making
up the total drag force. The other terms can be written out as

M =I+(P)Ver+((Pa)—(P)Ver — (Ver) - (Tk)  (4)

wherel represents the total form and viscous drag. Accord-
ing to Ishii and Mishimd32], the last term on the right hand
side is an interfacial shear term which is important in a sep-
arated flow. According to Ish[21], the term({Px) — (Px))
only plays a role when the pressure at the bulk is signif-
icantly different from that at the interface as in stratified
flows. For many applications both terms are negligible, and

(5)

Mrhe final resulting governing equations are showrahle 1

2.1.2. Closure models

In the Euler—Euler concept, sometimes called the two-
fluid approach, both the continuous and dispersed phases are
considered as continuous media. These models incorporate
two-way coupling, which is especially important for high
voidage flows. A drawback of these models is, however, that
they need complex closure relations.

The interfacial momentum transfer between the liquid and
the gas includes a number of force contributions,

I:Idrag+lam+1hist+Iturb+Iliﬁ (6)

wherel grag denotes the form and viscous drdgy, denotes

the added mass force which is an inertial force caused by rel-
ative accelerationfs; is the history or Basset force, which

is a viscous force caused by relative acceleratipgy, de-
notes the effect of turbulent fluctuations on the effective mo-
mentum transfer, anfij is the lift force which denotes the
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transverse force caused by rotational strain, velocity gradi- whereCy;  andCj; y are the lift force coefficients associated

ents, or the presence of wa[g]. with rotational strain and velocity gradients, respectively.
The drag force represents the mean interphase momentunirom laminar, inviscid flow the value of 1/2 can be deter-

transfer coming from the local perturbations induced by the mined for the lift force coefficient for rotational strain. In lit-

dispersed phase erature, a wide range of values can be found for the lift force
o 3Cy coefficient, as the above equations originates from inviscid
Igrag=€jp;j <;Zd—b|vr|vr> (7) flow around a single sphere. Tomiyama et[a¥] have per-
J

formed experiments of single bubbles in simple shear flows
whered, is the average size of the dispersed phase con-and have found positive and negative values for the lift force
glomerates (e.g. bubbleg)y the drag coefficienf33], and coefficient, depending upon the specific bubble characteris-
vy is the local relative velocity between the dispersed phasetics. According to Lathouwerf84] the lift force coefficient
and the surrounding fluid flow. This expression for the drag in multiple bubble modelling is sometimes used to correct
is valid for relative dilute systems. As the dispersed frac- for other effects unaccounted for by present models.

tion increases, the effect of mutual hindrance between the

dispersed phase conglomerates plays an increasing role, and 2. Fluid—solid flows

this effect is not taken into account. Expressions to deter-

mine the drag at high dispersed phase fractions are highly 5 1 Governing equations

empirical of nature and applicable to a limited number of  Anderson and Jacksda] and Jacksofi38,39] use a for-

systemg34]. _ o mal mathematical definition of local mean variables to trans-
The added mass force takes into account the inertial forces|ate the point Navier—Stokes equations for the fluid and the

due to the relative acceleration between the phases. A genera\jewton’s equation of motion for a single particle directly

equation for this force is given by into continuum equations representing momentum balances
[ — Divy  Djv; 8 for the fluid and solid phases. The point variables are av-
am = €0k Cam Dt Dt (8) eraged over regions large with respect to the particle diam-

eter but small with respect to the characteristic dimension
of the complete system. A weighting functiog(jx — y|),

is introduced in forming the local averages of system point
variables, wheréx — y| denotes the separation of two arbi-
trary points in space. The integral gfover the total space

is normalized to unity:

where the added mass coefficie@tm, is a function of the
volume fraction[35].

The history force is a viscous force due to the relative
acceleration between the two phases. Most often, this force
is ignored in continuum modelling, and there is not even
full agreement of its formulation even for the single bubble

case[34]. Drew and Lahey36] give an expression for the 4 f OO e(r2dr =1 (13)
history force combined with the lift force, 0
9  Jpjm; /’ a(r,r) The ‘radius’! of function g is defined by
Ihist= — d 9
hist d, €k o m T 9)

I oo
24, 2
where the appropriate frame-indifferent acceleration, ac- /0 gryredr = /1. g(ryredr (14)

cording to[36], is given b _ . .
gto[36,is g y Providedg is chosen so thdtsatisfiess « | <« L, wherea

a(r,t) = (% _ %) —(uj—uj)x (Vxu; (10) is the particle radius and is the shortest macroscopic length
Dt Dt scale, averages defined should not depend significantly on

The effect of turbulence on interphase momentum transfer the particular functional form of or its radius. .

is largely unknown. An important turbulent effect comesin ~ T1he gas-phase volume fractiag(x) and the particle

the form and viscous drag. The relative velocity, in this ~ NUMber density:(x) at pointx are directly related to the

equation should contain the averages of fluctuating velocity, Weighting functiong:

sometimes referred by as the turbulent drift velofly This

type of models typically leads to dispersive forcesve ). €g(x) = /v g(lx — yDdvy (15)
The lift force represents the transverse force due to rota- o

tional strain, yelocity gra(_jients, or the presence pf walls. A nx) = Zg(|x —x,)) (16)

general equation for the lift force caused by rotational strain 7

is given by . . . "
where Vy is the fluid phase volume, and, is the position
Lit,r = €;piCii,r(v; — vi) x £2 (11) of the center of particlg. The local mean value of the fluid

and the equation for the lift force caused by velocity gradi- Phase point propertiesf)g is defined by

ents is given by q 17
Tt — e Co a0, — 00 % (% ) 1z GO = fv gl = 3D v, (7)
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The solid-phase averages are not defined analogous to the Note that the forces due to fluid traction are treated dif-
continuous fluid phase averages since the motion of the solidferently in the fluid- and solid-phase momentum balances.
phase is determined with respect to the center of the particleln the particle phase, only the resultant force acting on the
and average properties need only depend on the propertiegenter of the particle is relevant; the distribution of stress
of the particle as a whole. Hence, the local mean value of within each particle is not needed to determine its motion.

the solid-phase point properties is defined by Hence, in the solid-phase momentum balance, the resultant
18 forces due to fluid traction acting everywhere on the sur-
n(x){f)s(x) = Z fss(lx —xpl) (18) face of the particles are calculated first, then these are av-

eraged to the particle centers. In the fluid-phase momentum
The average space and time derivatives for the fluid and solidbalance, the traction forces fluid—solid interaction are calcu-
phases follow from the above definitions. The averaging lated at the particle surface, and are employed there. Hence,
rules are then applied to the point continuity and momentum the fluid-phase traction term is given as
balances for the fluid. For the solid phase, the averaging rules
are applied to the equation of motion of a single partjcle 2/ ég -n(y)glx — y|dsy
s

psVpy— :/ agyn(y)dsy+ )  fopt+rsVpg (19 =
ot S (g :Zg|x—xp|\/; O'g'n(y)ds)v
P P

wherevs is the particle velocityps is the particle densityy),
is the volume of particley, o is the gas-phase stress tensor,
S, denotes the surface of particie and f, represents the
resultant force exerted on the partigifrom contacts with
other particles.

The resulting momentum balances for the fluid and solid hich is a result of a Taylor series expansiongin — y|

phases, dropping the averaging brackgten the variables,  apout the center of the particle with radiusHere, terms of

—V|a) glx—x,| [S (Gg - n(y)n(y)ds, | +O(V?)
)4 P

(23)

are as follows: O(V2) and higher have been neglected. Note that the first
9 term on the right hand side &q. (23)is the same as the
Pg€g [5 Vg + vg - va} fluid traction term in the particle-phase momentum balance.
The difference in the manner in which the resultant forces
= V(egog) — Z/ og-n(y)glx — yldsy + pgegg due to fluid traction act on the surfaces of the particles is
p S a key distinction between the Jackson (& (23) and

(20) Ishii (Eg. (3) formulations. In the Ishij21] formulation,
applicable to fluid droplets, the fluid-droplet traction term is
3 the same in the gas phase and the dispersed phase governing
Ps€s [5 Vs + Vs Vvs] equations.
The integrals involving the traction on a particle surface
= Zg|x — xp|/ 3gn(y) dsy + V- os+ psesg (21) have been derived H¢0] and are given irf38]
Sp

b I Dgvg
The first term on the right hand side of the gas phase equa- D gl —xyl / 0g - n(y) sy = — T Pecs8  PgssT
tion of motion represents the effect of stresses in the gas (24)
phase, the second term on the right hand side represents the
traction exerted on the gas phase by the particle surfaces,
and the third term represents the gravity force on the fluid. _
The first term on the right hand side of the solid-phase equa-V | @ Z glx —xp / (og-n(y)n(y)dsy | = —V(esPy)
tion of motion represents the forces exerted on the particles p S
by the fluid, the second term on the right hand side rep- (25)

resents the force due to solid-solid contacts, which can be here I h h f ffi
described using concepts from kinetic theory, and the third Ierg Is the mterpd a;se mé)menIthm} ranser C-CFE |(;|enlt
term represents the gravity force on the particles. The aver-"cluding viscous and form drag, it force, etc. The fina

aged shear tensor of the gas phase can be rewritten with th&®V€"niNg equations are presentediable 1
Newtonian definition as Comparing the fluid—fluid and fluid—solid momentum bal-

= g . ances fronTable 1 the differences are two-fold. First, in the
o0g=—Pyl + 6—(va + (Vog) ') (22) fluid—solid case, the solid volume fraction multiplied by the
g gradient of the total gas-phase stress tensor in included in
where the gas phase volume fraction is introduced in the the solid-phase momentum balance. In the fluid—fluid case,
volume averaging process. only the solid volume fraction multiplied by the gradient
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of the pressure is included. Secondly, in the fluid—fluid ap- for solids concentrations applying the Richardson and Zaki
proach in the gas-phase momentum balance, the pressureorrection factof42]. 0.01 < s < 0.63:

carries the gas volume fraction outside the gra_dier_lt opera- 3 . (1— es)espglvg — v
tor; the shear stress carries the gas volume fraction inside the8 = ZCd d

gradient operator. In the fluid—solid approach both stresses S
are treated equally with respect to the gas volume fraction Both equations lead to similar resuf&0].

and the gradient operators. When the gas phase shear stress

plays an important role, these differences may be significant2.2.2.2. Kinetic theory of granular flow.When the gov-
near large gradients of volume fraction, i.e. near interfaces. erning equations derived in the previous section are used
Some authors employ liquid—liquid governing equations to to predict the behaviour of fluid—solid flows, closures are
describe gas—solid flows (for instanggg9]) and the impact ~ required. Closure of the solid-phase momentum equation
of the discrepancy between the two sets of governing equa-requires a description for the solid-phase stress. When col-

(1— ) 205 (29)

tions depends upon the applicatif@]. lisional interactions play an important role in the motion
of the particles, concepts from kinetic gas thept§] can

2.2.2. Closure models be used to describe the effective stresses in the solid phase
resulting from particle streaming (kinetic contribution) and

2.2.2.1. Interphase momentum transfein dilute flows, direct collisions (collisional contribution). Constitutive re-

the interphase momentum transfer due to form and viscouslations for the solid-phase stress based on kinetic theory
drag is modelled with a model after the drag on a single concepts have been derived by Lun et[46] allowing for
particle in an infinite fluid, with the same equation as in the inelastic nature of particle collisions.

fluid—fluid flow: The derivation of the closures start with the Boltzmann
003 Cy description of a mixture of particles. The distribution of ve-

Igrag = €spg <—g——|vr|vr> (26) locities among a large number of particles in a volume ele-
ps4dp ment d- can be represented by the distribution of their veloc-

ity pointsc in the velocity space. The number density of this
local particle diameter, angk is the relative local velocity volume element will generally be a function of the location

between the fluid and the solid phase. Although most authors!n SPacer, of the time,r, as well of the velocity. There-

take this relative velocity as the difference of the local fluid forle, fche number Qerljsity of;hbe particles ar:.vodlumnf/i.th
and the solid velocities, this is formally not correct; the VEIOCIy ¢ attimer is denoted byf(e, r, ). This definition

undisturbed turbulent fluid velocity should be used instead. implie; that th? probable number of particles which at time
This is discussed later on. ¢t are situated in the volume elememt » + dr), and have

In more dense flows, the form drag and viscous drag are VelOcities lying in the rangéc, ¢ + dc) is f(c, r, 1) dedr,
generally combined in one empirical parameter, the inter- Where./ is called theprobability density function _
phase drag consta, in the modeling of the momentum We consider particles in which each particle is subject to

transfer between the two phases. The interphase momentun?" external forcg with accelerat!m Between times anq
transfer is then written as t + dr the velocity ¢ of any particle that does not collide

with another particle will change ©+a dr, and its position
Igrag = Bor (27) vector r will change tor + ¢d:. The number of particles
f(c, r, ) dcdr at timer is equal to the number of particles
The drag coefficienB is typically obtained experimentally  f(¢c+a dr, r+c dt, t+dr) de dr if collisions between particles
from pressure drop measurements in fixed, fluidized, or set-are neglected. The change jhover d is caused only by
tling beds, or by volume fraction dependent sedimentation collisions of particles:
experimentg42]. Ergun [43] performed measurements in
fixed liquid—solid beds at packed conditions to determine {f(c +adt, r +cdt, t +dr) — f(c, r,0)} dcdr

whereCy is the drag coefficient33,41] d,, is the average

the pressure drop. Based upon this model, Gidasji@y _Oef
proposed the drag model: = —,~ Uedr oz (30)
2 7 espylvg — vl wheredg f/0t is the rate of change of at a fixed point due
150—s™9 S+ b *Lind* I if €s > 0.2 to particle collisions. By dividing by etir dr and makingdt
B= (1-e)ds 4 ds tend to zero, Boltzmann’s equation f@ris obtained:
3. (1- €s)€spglvg — Vs _265
~Cy (1—€9) 2%, if €5 < 0.2 U e vrragd 0 31
4 ds 08) o TV T = (31)
or
Wen and Yu[44] have performed settling experiments of pf = ﬂ (32)
solid particles in a liquid over a wide range of solid volume ot

fractions and have correlated their data and that of otherswhereD f denotes the left hand side Bfy. (31)
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Now, let ¢ be any particle property. If the Boltzmann
equation is multiplied by¢dec and integrated over the

velocity-space, the equation of change of particle properties

is obtained:
/quf dec = nC(¢) (33)

in which the right hand term denotes the influence of bi-

nary, instantaneous collisions, so it is the integrated form of

de f/0t. For convenience, the fluctuating velocifyis used

as an independent variable instead of
C=c—c) (34)

The dependency of should also be changed 6, for
example, fordf(C) /ot

df(c —{e)) _ f IC _ af e —(e))
&  aC a  aC ot
de) of | 9f dc
a oC ' at aC (35)
Hence,df/dt anddf/or have to be replaced by, respectively,
of  dle) af of  dle) af
ot ot oC or ar aC

in order to take account of the dependencefan andr
through the dependence 6f on ¢. Hence, the expression
for Df becomes

of  d(c) of f  d(c) of

M ?%+(<>+C)(_r o aC +

Now the ‘mobile operator’ or ‘time-derivative following the
motion’ is introduced as

-~ (36)

b_? + {c) i
Dt o ar
This is the time derivative following the mean flow. Then
a 9 D{c) a a ad
Df_ C—f —f———f——fc:ﬁ@?)
Dt or aC Dt aC aC or
With this, Eq. (33)can be rewritten into
af af  D{eydf 9f , 9{c)
- ——=C:—d
/¢(Dt+ 8r+ aC Dt oC BCC 8r> ¢
=nC(¢) (38)

For further development of this equation, the following in-
tegrals are used for the transformation:

/¢—dC—Dt/¢de /—de

D(n
= Dt "< Dt> (39)
/¢C%dczi-/¢0de—/% crdc
or ar
_ neC) —n<Ca—¢> (40)
ar ar

- ¢ ¢
[ o5t dc=toniin==. - [ 22 rdc—-n(52)
(41)
in which ¢f — 0 as any velocity component approaches
+o00. By the same argument

/¢ CdC_—<8¢C> —n(¢>—n<%c> (42)

Using these results, we obtain the Enskog equation, which
is a generalization of Maxwell's equation:
a(c)

D) 1y ) | 91(6C)

Dt or or
00
oC

D¢ ¢
o[ {ear)
D{c) [d¢ ¢ d(c)

_ . — 4

5 (ae)-(iec) o] @
Setting¢ = 1, the mass balance is obtained:

Dn  d(c)
— n_
Dt or
This equation is also called the equation of continuity, ex-
pressing the conservation of the number of particles in the
suspension. Inserting the equation of continuity into the En-

skog equationkg. (43), simplifies the Enskog equation to
D(¢)

on{pC

D¢ dp
-» [<a>+<car> ¥
3¢ ae)
8C “or
With ¢ = C, this simplified Enskog equation corresponds
to the balance of linear momentum:

D{(c) on(CC)
Dt or

because(C) = 0. The first term denotes the change, fol-
lowing the motion, of momentum. The second term denotes
the stress tensor due to particle movement. The first term
on the right hand side represent the external body-forces, as
fluid influences and gravity. The last term on the right hand
side denotes the momentum change due to collisions. The
momentum equation and the continuity equation are identi-
cal with the equations of continuity and momentum derived
for a continuous fluid in hydrodynamics. This provides a
justification for the hydrodynamical treatment of a particle
suspension.

With ¢ = CC, the mean of the second moment of velocity
fluctuation is obtained from the simplified Enskog equation:

%) | oniac)
or

nC(¢) =

-0 (44)

8¢>>_D(c)<8¢>>
ac Dt \aC

(45)

= n{a) + nC(C) (46)

,bee) | anicee) — o) -

Dt or
+nC(CC)

(47)
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The first term denotes the change of the second moment of
velocity fluctuation. The second term represents the third
moment of velocity fluctuation. The first term on the right
hand side represents the transport of the second moment
of velocity fluctuation due to the average velocity of the
particles. The second term on the right hand side represents
the influence of the external forces. It can be readily seen,
that if the force does not depend @h this term vanishes.
The last term represents the influences of collisions on the
second moment of velocity fluctuation. The balance of third

moment of velocity fluctuation is obtained by inserting= Fig. 1. A pair of colliding particles.
CCC:
n D<gCC) + angCCC) =—-3n(CCC) : ? + 3n(aCC) With Egs. (50) and (51)the equation foP can be derived:
t r ’
d __hum; )
+ 3n(CC>(C>g + nC(CC) P = it m; m; (1+e)(g-n)n (52)
(48)

Consider the motion of the center of partigleelative to the

Balances of higher order momenta are fairly easily gener- center of the first particle, i.e. relative to axes moving with

ated. However, most methods only consider up to second!® Center of particlé (seeFig. 2). For such a collision to
order, and the third order term is closed with a Boussinesq °CCur: the center of particlemust cut a plane througle; +

approximation, e.g. O'j)zn dn, whereo; (epfesents Fhe_ radius of parti¢ledence,
the center of particlg must lie in a volume(g di)[(o; +
(cceey = —nevecece (49) j)?n dn]. In a collision between two particles, the vakig
. . . . _ representing a property of particjeis changed tqb//.. Thus
wherere is the effective viscosity, which can be related to the particle propertyp for this particle is changed by the
the mean free path of the particles. amountg’; — ¢,. The change ir}_ ¢; due to all collisions
In kinetic theory for granular flow, collisions are con- \here particlei has a velocity in(c;, ¢; + de;), particle j
sidered binary and instantaneous. Since only smooth andhas a velocity inc;, ¢; +de;), occurring in the direction in
spherically symmetrical particles are considered, the force (5 5 + dn), and in time(, ¢ + d) is
which either exerts on the other is directed along the line
joining their centers. Moreover, rotation is not considered. It (‘f)/i —¢) foy (i riscj ri+ (01 +oj)n, (o + g‘/)z
is supposed that the effect of any external force which acts 'X (g - n) dn de; de; dr dr (53)
on the particle during collision can be neglected compared e
to the dynamic effect of the collision. With these assump- fa(ciri cj.rj, 1) represents the pair probability density
tions, the velocities before and after a collision have def- fynction, indicating the number density of a pair of particles,
inite )/aI}Jes, which are denotad, ¢; before the collision,  \yhere the first particle is located atwith velocity ¢;, and
andc;, ¢;; after the collision. The details of the collision it the second particle located &f with velocity ¢; at timet.
self are of no importance for the theory; it is only impor- ¢, characterizes the statistics of binary collisions.
tant to know the relation between the initial and the final ~|htegration over all values of; and ¢, gives the total
velocities. change duringitin )" ¢;, summed over all particles invd
Before the collision, the relative velocity of the two parti- gy to collisions. Since the number of particles in id
cles isg = (¢; — c¢;), and by definitiong - n > 0 (otherwise
the particles move away from each other), wheres the
normal unit vector lying in the direction of the vector join-
ing the center of the two particles, defined with its origin at
the point of contact (seEig. 1). The collision impulseP
exerted by particlg on patrticlei is directed along the line
connecting the centers,

P = m,-(cg — C,’) = —mj(c’j — Cj) (50)

P can be obtained by characterizing the incomplete restitu-
tion of the normal component of the relative velocity, using

the coefficient of restitutiom, with 0 < e < 1:
Fig. 2. The outlines of two possible colliding particles. Both particles

g/ -n=—eg-n (51) must lie in a volume(g d5)[(o; + o)%r dn] to possibly collide.
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ndr, this integral must equaddrC(¢)dt. Dividing by dr dr where® is the transfer contribution, due to the transport of

results in: ¢ during collision, andy is a source-like contribution, due
to the change of property during collision. Note that the
nC(); = /// (@) — ) f(ciricjri derivative in the parenthesis of the last term is an argument
gn>0 , to the function®.

+(0i +0j)n, 1)(0; +0;)°(g - n)dnde; dc; (54) The stress tensor and the flux of fluctuating velocity are
where the conditiorg - » > 0 indicates that the integration 0 - 2u 8 -
is to be taken over all values af, ¢;, and ¢z for which a p(CC) = =(C*)] — ————— [l+ =n(3n — 2)6580} D

S ) o . 3 n(2—mgo 5
collision is impending. For the particlgthe rate of increase 59
of property¢ can be found by the same arguments as above, (59)
only by interchanging the roles of the colliding particles by
interchanging subscriptand j and replacing: by —n. This 1 s 12, 1 .
contribution may thus be written as §p<c ©= % ”1+ 5" “n = 3)esgo} Y <§<C >>
, 12 d c?
n@((b),:/// (¢i—¢,-)f(2)(c,-,rj—(ai +aj)n,cj,rj) +—77(277— ]_)(77_ 1)_(6§g0)uvn}
gn>0 5 des 3n

X (o7 + oj)z(g -n) dn dc; de; (55) (60)
In early development of kinetic theory, the pair probability with the abbreviations
distribution function was expressed as the product of the two 8
individual probability distribution functions: ;= @1— 33 (61)
folei,ri,cjrj, )~ flei,ri, 1) flcj, rj, 1) (56)

o e 75n/(C?) /3

This is called the assumption afiolecular chaosIn the A= —F5— (62)

. . 6402
molecular chaos assumption, particles are assumed to be

randomly distributed, without their volume playing a role. 5 = %(1+ e) (63)
Hence, particles may overlap. In very dilute systems this
may not lead to a large error, as the chance that two particles 5m((C?)/3m)

overlap is very small. For denser gaseq, (56)is rewritten " 1502 (64)

as nm n (65)
ECqo= — —= —

folei,ri,cj,rjt) =~ goflei, ri, 0 flcj,rj 1) (57) ST o vV

wheregg is called the radial distribution function at contact. b= %(WC) n {V<C)}T B %(V _ (c);) (66)

go is equal to one for a dilute particle system, and increases

with increasing particle number density, becoming infinite For the momentum equation, the source like contribution,
as the particle system approaches the state in which the parti- js zero, and thus only the transport contributi®nre-

cles are packed so closely together that motion is impossible.mains. Thus, the total collisional contribution to the momen-
The effect ofgo is to reduce the volume in which the center m equation has the exact same form as the stress tensor.
of any particle can lie, and so to increase the probability of Therefore, most researchers denote this contribution as ‘the

a collision. By the first assumption of molecular chags,  collisional contribution to the particle—particle stress’. The
is only a function of the position and not a function of the  term for the momentum equation is

velocity. The functiongg needs only to be evaluated at the
point of contact and not for every position in the system.

= = 4 =
: "y 5 = Pc= —p(C? 1
The above equation assumes that the two probabilfties Omomentum= Pc = 3 0(C%)mésgo

and f; are uncorrelated. However, in most practical flows, 16ues 1 8 3n_ 2 5
this will not be the case, but there will be a correlation " 52-1) [ +5nGn - )ngo}
between the probability density functions of two nearby 256, [6- :
particles. Simonin and co-workej22] have researched this — gnﬂfzgo [ED + (V- (c))[i| (67)

influence, and it is not discussed here.

The integralsEgs. (54) and (55)are solved by Lun etal.  These equations can be directly used to solve the ensemble
[46] by using the Enskog series expansjdb] and by Jenk-  averaged momentum equations for a granular material, as
ins and Richmarj47] employing Grads 13 moment system they can be transformed to the hydrodynamic definitions of
[48]. For the momentum equations, the collisional contribu- viscosities and normal pressure. For the energy equation,
tion is written in the form both ® and x are non-zero. The form @ is added in the

00(¢)  9{c) ) same form as the flux of fluctuating energy, and is therefore
nC(@) = x(@) - ar a_r@ (%) (58) often described as the addition to the flux of fluctuating
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energy due to collisions. These terms are properties of particles are negligible compared to particle—
particle interactions (collisions and friction) and the mean
Ocnergy=4 fluid-particle velocity coupling (drag). Therefore, the fluid
12n¢es 2, phase is often modelled as laminar and fluid property
=75 {[1 + 5 (4n — 3)esgo correlations with the fluctuating particle velocities are
16 omitted.
+—(41- 33n)nesg0] At high solids volume fraction, sustained contacts be-
157 tween particles occur. The resulting frictional stresses must
xV(}< 2>> 1—271(277—1) be accounted for in the description of the solid-phase
3 5 stress. Zhang and Rauenzafa®b] conclude that particle
d (C?) collisions are no longer instantaneous at very high solids
x (n— 1)E(€Sg0)3_nvn} (68) volume fractions, as is assumed in kinetic theory. Several
S approaches have been presented in the literature to model
48 2 2\ 3/2 the frictional stress for dense packed particles, mostly orig-
pe (C?) Co . i .
Xenergy= —=n(1—n)—¢go (T) (69) inating from geological research groups. Typically, the fric-
e 7 tional stressgs, is written in an incompressible Newtonian
Insertinge = 1 (n = 1) into Eq. (69)leads tox = O, form:
which shows that the energy equation becomes a conserved = T
quantity for systems where collisions are fully elastic. of = Pl+ (Vo + (Vo)) (70)
A CFD simulation of a dense gas-—solid fluidized bed is o frictional stress is added to the stress predicted by
shown inFig. 3. This S|mulat|(_)n has.employed the kinetic kinetic theory fores > €s min:
theory of granular flow combined with the interphase mo-

mentum transfer model of Wen and Yu. It is shown by nu- Ps = Pyinetic + P (72)
merous authorgs,8-10,49-54that simulations of fluidized
beds can give good qualitative prediction. ks = [kinetic + /At (72)
2.2.3. Dense particle flows Johnson and Jacks{®6] propose a semi-empirical equation
In dense-phase flows, such as fluidized beds, the fluctu-for the frictional pressurel
ating velocity of the fluid phase and its correlation with the e i )
P = Fr (€s — €s,min) (73)

(Es,max — €g)P

where Fr,n, and p are empirical material constants. This
expression is valid foes > €smin, Wherees min is the solids
volume fraction at which frictional stresses become impor-
tant. The order of magnitude of the frictional pressure, with
material constants determined by various authors, is shown
in Fig. 4. The frictional viscosity is then related to the fric-
tional pressure by the linear law proposed by Could&ts,

60

10 T T T
@® Ocone et al. (1993)
X Johnson and Jackson (1987)
P + Johnson et al. (1990)
_ 10 | 4 Syamlaletal. (1993)
g
?
<t
®
K
£
S
4
Fig. 3. A snapshot of a transient CFD simulation of a gas—solid fluidized 102 ) ) ) ) ) )
bed. The color indicates the solid volume fraction, red high solids volume 05 052 054 056 058 06 062 064
fraction, and blue for high gas volume fraction. (For interpretation of the Solids volume fraction [-]

references to color in this figure legend, the reader is referred to the web
version of this article.) Fig. 4. The normal frictional stress with empirical constants ff6if-59]
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0.12 : : : : becomes important, the gas-phase turbulence becomes rela-
— e=099 tively insignificant and the unrealistic volume fraction con-
. 01f |--- e=1.0 ] tours reappear.
'? b Elgobashi and Abou-Araf67] performed a Reynolds de-
2 0.08f composition of the Eulerian two-fluid equations and found
& / a large number of terms arising from this. Hrenya and Sin-
g 0.06f /] clair [64] have modelled three of the time averaged terms
§ arising from this decomposition with the eddy mixing length
g 0.04 S gradient assumption. They found significant improvement
El of the results, with solids volume fraction contours similar
0.02} to experimental data. Although Lju49] did not use ki-
netic theory, they found the same improvement for horizon-
% . . . 1 tal pipe-flow.
MR [-] The type of time-averaging th§t9,64] proposed, gives

rise to an additional term in the continuity equation. Apart
Fig. 5. The axial solids volume fraction profile for 2 values of the particle frgm the problems with numerical scheme this introduces, it

restitution coefficient. also introduces scaling in the eddy viscosity coefficient with
the volume fraction. When using Favre averaging instead,

or Schaeffelf61]: the only additional terms arise in the momentum equations.
. The most important term arises as the correlation between

Ps sing : : ; . .

Wi = the fluctuating particle velocity and the fluctuating particle

(1/6)((dus/dx — dvs/dy)? + (dvs/dy)? volume fraction. When this term is closed with a gradient
S\ + (Bus/0x)2) + (1/4)(dus/dy + dvs/0x)? assumption, this leads to additional dispersion terms in the

momentum balance of the order gVe.

Simonin and co-worker$5,14] have used a different
The stresses in the dense regime predicted by frictional stresexpression for the interphase momentum transfer. In their
models are typically much larger than those predicted by model, they use not the averaged gas velocity as-is, but
kinetic theory. A comparison by Srivastava and Sundaresanrecognize that the undisturbed local fluid turbulent veloc-
[62] shows that the above model is as suitable for denseity should be used instead. The differing term, called the
gas—solid flow as more complex frictional stress models. turbulent drift velocity[68], can be modelled with a dis-

persion coefficient and the gradients of the solids and fluid
2.2.4. Dilute particle flows volume fraction. Hence, the form of the dispersive term is

The kinetic theory as derived 6] is able to predict  the same as obtained from Favre averaging. The advantage
many types of complex gas—solid flows. Sundaresan andwith using the turbulent drift velocity is that it gives the
co-workerg63], however, showed that this model exhibits a order of magnitude of the coefficients in the model, as well
very strong, unrealistic degree of sensitivity to the coefficient as it dependency upon other flow properties.
of restitution,e. To illustrate this sensitivityFig. 5 shows
the solids volume fraction in a one dimensional vertical pipe
flow for e = 1 and 0.99. Although the prediction is fairly 3. Lagrangian modeling of the dispersed phase
good fore = 1, as shown ifil 7], this value ok is unrealistic.

Lower values ofe give a completely incorrect prediction 3.1. Fluid—solid modeling

of the location of the solids in the tube, as was pointed

out by [64]. Almstedt and Ljus showed that in horizontal With increasing computer power, discrete particle mod-
gas—particle pipe-flow, without applying kinetic theory, the els, or Lagrangian models, have become a very useful
modelling results are even worse, leading to that all the solidsand versatile tool to study the hydrodynamic behavior of
fall to the bottom of the pip§l9]. particulate flows. In these models, the Newtonian equa-

One of the important things that are missing to obtain a tions of motion are solved for each individual particle,
model suitable for dilute gas—solid flow is gas-phase turbu- and a collision model is applied to handle particle en-
lence. While the magnitude of the gas-phase turbulence iscounters. Recently, such particle models have been com-
negligible in dense gas—solid flow, it may play a major role bined with an Eulerian model for the continuous phase
in more dilute flows. Several authors have researched theto simulate freely bubbling and circulating fluidized beds
gas-phase turbulence terms, which are present in the diffu-[25,69-71]
sion term after closing them with a eddy viscosity model
[65,66], and these models were successful in predicting the 3.1.1. Fluid phase
flow of extremely dilute flows. However, at slightly more The motion of the fluid phase is calculated from the
dense flows, when the drag between the gas and the solidaveraged fluid-phase governing equations as presented in

(74)
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Section 2.2.1The continuity equation for the fluid phase is is calculated. The calculation of the paths of the particles

degog consi§ts of two steps: (i) caI_Cl_JIation of thg parti_cle motion,
o T V- €gvg =0 (75) and (i) treatment of the collision of a particle with another
_ particle.
and the momentum balance is The motion of individual particles is completely deter-
degpgvg mined by Newton’s second law of motion. The forces acting
—a T V(€argrgrg) on each particle, next to collisions, are gravity and the trac-

tion force of the fluid phase on the particle. Thus, the mo-
mentum equation describing the acceleration of the particle

(76) IS

= —€gVP + ¢4V - %g + €g0g8
YK VaiBlug — vs)8(x — xs))

K
Mmss — m cTg — —@Wg— 0

where the compressible fluid phase stress tensor is defined e £ s 9 ° s 0
z_as - o whereas is the acceleration of one partiché; the volume of
Tg=2uDg — %utr(Dg)I (77) one parti_cle,P the local pressureg the local solids volume

- _ fraction, 74 the fluid phase stress tensor, afidepresents
where Dy is the strain rate tensor, the interphase momentum transfer coefficient.
= For describing the collisions of particles, two types of
Dg=3(Vvg+ (Vo)) (78) : o /P

approaches are possible, the hard-sphere approach and soft-
and . the fluid-phase viscosity. sphere approach.

The last term inEq. (76)represents the interphase mo-
mentum transfer between the fluid phase and each individ-3.1.3. Hard-sphere approach
ual particle.s represents a pulse function, which is one if In the hard-sphere approach, collisions between particles
its argument is zero and zero otherwise. The last term is to are assumed binary and instantaneous. The velocities of the
ensure that the interphase momentum transfer is only takenparticles emerging from a collision are calculated by con-
into account in the fluid-phase momentum equation at the sidering the balance of linear and angular momenta in the
location of the corresponding particle. As was indicated collision. During a collision, energy is stored in elastic de-
earlier, a problem of this Lagrangian—Eulerian approach is formations associated with both the normal and the tangen-
the length-scale of the averaging. In the Eulerian—Eulerian tial displacements of the contact point relative to the center
approach the length scales of the averaged fluid- andof the sphere. Because the release of this energy may af-
particle-phase are equal and the “sub-grid” behavior of the fect the rebound significantly, coefficients of restitution as-
particles is described with the kinetic theory of granular sociated with both the normal and tangential components
flow. In the Lagrangian—Eulerian approach, the length-scale of the velocity at the point of contact are taken into ac-
of the fluid-phase is larger than the length-scale of the par- count. This model is employed for both particle—particle and
ticle phase. The information of fluid induced movement of particle—wall collisions.
particles, as well as particle induced movement of fluid, We consider two colliding spheres with diametéfsand
cannot be transferred between the phases on the eddy ow2, masses:; andmy, and centers located at andr,. The
individual particle scale. Hence, a computational cell in unit normal along the line joining the centers of two spheres
which a small cluster of particles is present is penetrated byis n = (r1 — r2)/|r1 — r2|. During the collision, sphere 2
the fluid-phase, similar as a fixed porous medium and the exerts an impulsg onto sphere 1. Prior to the collision the
fluid phase does not discriminate between homogeneouslyspheres have translational velocitigsand ¢, and angular
distributed particles or clustered particles within one cell. velocitiesw; andw;. The corresponding velocities after the
In reality, the fluid-phase “dodges” the particle clusters. collision are denoted by primes. The velocities before and
Particle clustering due to the local fluid flow (“micro-scale” after collision are related by
clustering) is thus not captured in the Lagrangian—Eulerian
approach. This shortcomings of the outlined model, in the
particle—fluid phase coupling, should be well kept in mind 5,4
when attempting to use this simulation method. So-called
“ - . . . . 211 20
true” direct numerical simulations can be carried out to —= (0} — w1) = ——=(0p — w2) = —n x J (81)
solve the actual fluid field around each particle (§72]) d1 d2
but this is extremely computationally expensive and can
only be done for a very limited number of particles.

my(cy —e1) = —ma(ch —c2) = J (80)

where, for example] = md?/10 is the moment of inertia
about the center of a homogeneous sphere. In order to de-
termine the impulseJ, the relative velocityy at the point

3.1.2. Solid phase of contact is defined:

For the solids, we consider flows of inelastic spheres. In a
Lagrangian calculation, the path of each individual particle ¢ = (¢c1 — ¢2) — (%dlwl + %dzwz) X 1 (82)
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With the above equations, the contact velocities before and3.1.4. Soft-sphere approach
after the collision are given by In the soft-sphere approach the particle interactions are
modelled through a potential force. This model for contact
, 7(1 1 571 1 . . -
q—q=- (_+_) J-= (_ + _> n(J -n) (83) forces was first proposed KBy 3]. The physical motivation
2 \my ma 2\my  mp for the soft-sphere approach is that when two particles
collide they actually deform. This deformation, in the
soft-sphere model described by the overlap displacement of
two particles, is the driving parameter of the force model.
n-q=—en-q (84) The larger the overlap displacement, the larger the repulsive
force. In such a particle—particle interaction, the particles
where 0< ¢ < 1. In collisions that involve sliding, the lose kinetic energy. When two particles slide under the
sliding is assumed to be resisted by Coulomb friction and application of a normal force, a frictional force results. Con-
the tangential and normal components of the impulse aresidering these forces, the soft-sphere model is composed
related by the coefficient of frictiop: of three mechanical elements, i.e. a spring, dashpot, and
friction slider, cf.Fig. 7. The spring simulates the effect of
Inx J|=pm-J) (85) deformation and the dashpot the damping effect. The slider
simulates the sliding force between two particles. The ef-
fects of these mechanical components on particle motion
appear through the following parameters: the stiffness
the damping coefficient, and the friction coefficient.
(1+e)(q - n)n+u(l+ e)coty[q — n(q - n)] (86) The normal component of the forces acting during particle
1/mq+ 1/m> contact is given by the sum of forces modelled by a spring
and a dashpot,

The coefficient of restitutiorg, characterizes the incomplete
restitution of the normal component gf

wherep > 0. Combiningegs. (83)—(85provides an expres-
sion for the impulse transfer in the case when the collision
is sliding:

JO =

wherey is the angle betweeq andn and the superscript
1 denotes that the collision involves sliding. With smyall nij = (—knijSnij — Nn,jjor - m)n (90)

the collision is sliding, and ag increases the sliding stops \yhere s is the normal overlap between particlegnd j

when and v, is the relative velocity between the two particles.
nxqg =—Enxgq (87) The.tangential c_:ompor_lent of the contact force acting during
particle interaction is given by the sum of forces modelled by
or equivalently a spring and a dashpot, or a spring and a slider, depending on
the magnitude of the ratio between the normal and tangential
cot vn = 21+8) (88) component, which physically indicates if a particle is sliding
T1+e)u or not.
where 0< & < 1 is the tangential coefficient of restitution. —keii8 — meij Jij, | — keijd — mijl < I Fn il
Collisions withy > yp do not involve sliding but sticking, Fij= Ji
and in this case the impulse is found by combirtis. (83), ’ —wlFpijl=—, | = kejjd — nejijl > | Fnijl
. [Jij
(84) and (87)
(91)

_ (4o mn+@/DA+9lg —ng-m] g0 _ _ _ _
1/m1+ 1/my where Jj is the slip velocity at the point of contact and

is the friction coefficient which indicates when the interac-

In this expression, the superscript 2 denotes the collision tion between to particles is considered sliding. The force on
does not involve sliding, but sticking. The three parameters each particle in the system consists out of the above nor-
e, b, andé are taken to be constant and independent of the mal and tangential forces caused by the respective particle
velocities. overlap.

Collisions with a flat wall are treated by considering the  The stiffness coefficient and the damping coefficiemt
wall as a particle with infinite mass and with the appropriate may be related to physical particle properties by means of
wall values ofe, u, andé. Hertzian contact theorj25] and the displacement theory of

Fig. 6 shows a CFD simulation of a gas fluidized bed Mindlin and DeresiewicZ74].
employing a hard-sphere model. Various strategies to trans- The time-step which can be taken in hard-sphere collision
late the presence of the two-dimensional “disks” to a dynamics is governed by the successive time between col-
three-dimensional volume fraction are compared to eachlisions. In dense systems this time-step may be very small,
other and with experiments. Although these strategies haveleading to very long computational times. The time-step in
been put forward in the literatur9—71] none of them soft-sphere collision dynamics is governed by the stiffness of
give satisfying results, and three-dimensional simulations the normal and tangential forces. Unfortunately, the Hertzian
are advised here. contact theory predicts such high stiffness that in practical

J@ =
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Fig. 6. Ten snapshots of a visual representation of the location of the particles at equidistant times (given at the bottom of the series in ‘sfjcala supe
gas velocity ofU = 0.9 m/s. The three series on the top are simulations with different strategies to translate the presence of the two-dimensional particles
to a three-dimensional volume fraction, and the series at the bottom is an experimental result. For de{&il3, see

cases this also leads to very small possible time-steps in4. Interface tracking methods
denser suspensions. Tsuji et @5] have suggested to use
a lower value for the stiffness coefficient. According to When studying the behaviour of a relatively small number
[25,75,76] the physical impact of this is low, but the exact of interfaces, for instance to study a few droplets or bubbles
meaning or limits of this are unknown. in a fluid—fluid flow, methods which track the location of the
interface can be applied. One of the most well-known meth-
ods is the volume-of-fluid methd@6]. In the VOF method,
the fluid location is recorded by employing a volume-of-fluid
function, or color function, which is defined as unity within
the fluid regions and zero elsewhere, hence representing the
local volume fraction of one of the phases. In practical nu-
merical simulations employing a VOF algorithm, this func-
tion is unity in computational cells occupied completely by
Dash-pot fluid of phase 1, zero in regions occupied completely by
phase 2, and a value between these limits in cells which
contain a free surface. In the VOF algorithm, the color func-
tion is discontinuous over the interface. In the closely re-
lated level-set algorithm, a color function is also employed,
but this function is continuous and having no direct phys-
ical meaning. The local volume fraction is translated from
Fig. 7. A spring—damper—dashpot system to model particle contact.  the local value or gradient of the color function.

Spring

Slider
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An advantage of the level-set algorithm is its simplicity accurate numerical scheme for solving the color transport
to compute derivatives of the color function, required for in- equation. However, the accurate calculation of the curvature
stance to calculate the curvature of the surface. A disadvan-of the interface, by determining the derivative of the color
tage of this approach, is that the numerical representation offunction, is difficult from a numerical point of view.
the transport equation to determine the values of the color Recently, significant progress has been made in the nu-
function is prone to numerical error and leads to a loss or merics and application of the VOF and level-set algorithms,
gain of mass when calculating the local volume fractions. e.g.[77,78] However, there is very little experimental vali-
Successful implementations of the level-set methods havedation to verify VOF or level-set simulation results. More-

been demonstrated, for instance,[BY,28] However, sim- over, when employing the VOF algorithm, it is still difficult
ulations of gas/liquid systems using this method have not to obtain a good estimate of the curvature of the free surface.
been validated experimentally yet. A separate class of methods are the so-called front track-

In VOF methods, the color function is a semi-discontinuousing methods[79,31] where fictitious particles are placed
function, facilitating the calculation of the properties of along the interface. The particles move with the fluid and the
each of the phases and making it possible to present aninterface is reconstructed from the location of the particles.

0.05 o 0.1
t=6.0-10""s t=8.0-10"2s

Fig. 8. The simulation of a droplet falling upon a liquid layer in a box with hydrophobic walls. Units are in metre. For detajBQ]see
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The results are reported to be accurate, but expensive. Alsob. Discussion and conclusion

the reconstruction of the interface can be troublesome, es-

pecially when break-up or coalescence of the interface oc- This article provides an overview of physical models and

curs. Then, this method needs to be combined with anotherclosures employed for computational fluid dynamic predic-

method to produce accurate resyi4]. tions of multiphase flows. A separate description is given
All interface tracking methods consider two separate, of the Eulerian framework and the Lagrangian framework.

incompressible fluid phases. The two phases are separate@lso, a separate class of multiphase CFD models are dis-

by a reconstructed interface, from some color function or cussed, namely the interface tracking methods.

another Lagrangian representation of the interface. The Concerning the Eulerian framework, we have compared

Navier—Stokes equation for the incompressible fluid phasesthe different formulations for fluid—fluid flow and fluid—solid

reads flow. The differences between these formulations lie in the
fact that the points inside one particle are fully correlated to
u - o . .
pa_ +pV(uu) = —-VP+V-T+pg+S (92) each other unlike in a fluid droplet or bubble. For applica-
t

tions where the gradient of the volume fraction is expected
to be small, the differences are minor. However, when the
gradient of the volume fraction plays an important role, for
V.u=0 (93) instance in cluster formation in dilute flows, it is believed

that the two formulations will quantitatively differ.

wherep s the density of the local fluid? the local pressure, A nL]Jcmber of :Tfpor;iar_lé cfllo_s:rfclas arehreqmred mf the Eu-
S the surface tensior, the viscous stress tensor, amdhe erian framework for fluid—fluid flow. These are often not

velocity field. The velocity field holds both the liquid and @ccurate at high dispersed phase volume fractions. On some

the gas velocity. Viscosity and density are assumed constantOf t_he closures, th(_er_e IS even a dispute on th«_a|r formulation,
while others are difficult to implement numerically.

in each of the phases, but may vary from phase to phase, X ) . : )
with valuesp; and u; for phase. For_ the fIU|c_1—sql|d Eulerian 9Iosure mc_)dels .thI.S article
explains the kinetic theory starting, from first principles by

In the standard VOF or set-level methods, a transportd ving the Bol d Ensk ) Th i
equation to determine the evolution of the color function is eriving the Boltzmann and Enskog equations. The resulting

with the continuity equation for an incompressible fluid,

solved[26] equations give a powerful br_:\sis to implement futher clogure
models, for example, for fluid phase turbulence interactions

o with the particles. A particle collision model is employed

m +u-VE=0 (94) taking into account the inelastic nature of particles, but ne-

glecting the particle rotation. The probability correlation be-
in which ¢ is represented as a color function, denoting either tween two colliding particles due to the flow of the fluid is
phase 1 or phase 2. In the level-set method the séalr  neglected, but it is expected that this is an important phe-
a smooth function, and in the VOF methédepresents the  nomenon, especially in dilute flows where the fluid phase

local volume fraction of phase 1. plays a dominant role. The final closures arising from the
The first VOF type approach was suggested28)]. Al- kinetic theory of granular flow are presented, which have

though this scheme is still often applied, it performs badly been used with a fair amount of success in fluid—solid calcu-

on the Rudman translation tef0], in which the fluid is lations. Also, a short discussion is given of physical features

translated diagonally over the mesh, and the Rider—Kothe arising from dilute and dense flows.

reversed single vortex tef81], in which the fluid is con- In the Lagrangian framework, two common methods are

servedly rotated. Also other piecewise constant schemesused in fluid—solid modelling: i.e. the hard-sphere approach
(e.0.[82]) show a large amount of smearing of the interface and the soft-sphere approach. In the hard-sphere approach,
and a violation of the conservation of each of the phases patrticle collisions are assumed binary and instantaneous, like
[77]. The application of so-called surface sharpening mod- the collision between to billiard balls. This might be an ap-
els, as present in some commercial CFD codes, can somepropriate model for dilute flows, but for dense flows colli-
what prevent the smearing of the interface. sions are far from binary and instantaneous. An alternative to
Piecewise linear schemes are able to track a linear surfacethe hard-sphere approach, is the soft-sphere approach, where
including its orientation. Youngs's VOF methd83] and particles can overlap and particle interactions can be en-
the stream schem@4] are examples of these. This piece- during. This is modelled by a slider—spring—dashpot model,
wise linear profile obtained from these methods more closely with associated friction, spring, and damping coefficients.
represents the actual interface geometry. These schemes ard/hen employing physical values for these coefficients, un-
much more complex then piecewise constant schemes, espefortunately, the equations become stiff and numerically hard
cially in three dimensions, but they have been shown to be to solve.
significantly more accurate in numerical tef86,80,81,84] Interface tracking methods, of which the volume-of-fluid
An example of a falling and colliding droplet calculated with model is the most common in multiphase flow, can be
a Lagrangian piecewise linear method is showirig 8. employed to study the behaviour of a small number of
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interfaces. The idea behind these interface tracking methodg12] D. Gidaspow, Multiphase Flow and Fluidization, first ed., Academic

is that the same set of equations is solved for predicting the

Press, San Diego, 1994.

evolution of both fluid phases, the Navier—Stokes equations. [13] J. Kuipers, A two-fluid micro balance model of fluidized beds, Ph.D.

Next to solving the Navier—Stokes equations, with a viscos-

ity and density which can locally vary due to the local fluid,

an equation for the interphase is solved. There are differ-

ent ways formulating and solving this equation. Interface

Thesis, University of Twente, The Netherlands, 1990.

[14] J. Lavieville, E. Deutsch, O. Simonin, Large eddy simulation of
interactions between colliding particles and a homogeneous isotropic
turbulence field, in: ASME Meeting on Gas-Solid Flows, FED, vol.
228.

tracking methods can be used with a reasonable degree 0f15] C. Lun, S. Savage, The effects of an impact velocity dependent

success, depending upon the problem, the type of interface

method, and the accuracy of the underlying numerics.

From this review it has hopefully become apparent that

the application of multiphase CFD is very promising but
requires further development.
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