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Abstract

This paper presents an overview of the physical models for computational fluid dynamic (CFD) predictions of multiphase flows. The
governing equations and closure models are derived and presented for fluid–solid flows and fluid–fluid flows, both in an Eulerian and a
Lagrangian framework. Some results obtained with these equations are presented. Finally, the capabilities and limitations of multiphase
CFD are discussed.
© 2003 Elsevier B.V. All rights reserved.

Keywords:Multiphase flow; Computational fluid dynamics

1. Introduction

Multiphase flows are encountered in many processes in in-
dustrial operations. Numerous examples can be found in the
chemical, petroleum, pharmaceutical, agricultural, biochem-
ical, food, electronic, and power-generation industries. Due
to the inherent complexity of multiphase flows, from a phys-
ical as well a numerical point of view, “general” applicable
computational fluid dynamics (CFD) codes are non-existent.
The reasons for the lack of fundamental knowledge on mul-
tiphase flows are three-fold:

(1) Multiphase flow is a very complex physical phenomenon
where many flow types can occur (gas–solid, gas–liquid,
liquid–liquid, etc.) and within each flow type several
possible flow regimes can exist (annular flow, jet flow,
slug flow, bubbly flow, etc.).

(2) The complex physical laws and mathematical treatment
of phenomena occurring in the presence of the two
phases (interface dynamics, coalescence, break-up, drag,
. . . ) are still largely undeveloped. For example, to date
there is still no agreement on the governing equations.
In addition, proposed constitutive models are empirical
but often lack experimental validation for the conditions
they are applied under.

(3) The numerics for solving the governing equations and
closure laws of multiphase flows are extremely com-
plex. Very often multiphase flows show inherent oscil-
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latory behaviour, requiring costly transient solution al-
gorithms. Almost all CFD codes apply extensions of
single-phase solving procedures, leading to diffusive or
unstable solutions, and require very short time-steps, or
CFL numbers.

In spite of the major difficulties mentioned above, signif-
icant progress has been made in various areas of multiphase
flow CFD. In their famous article from 1967, Anderson and
Jackson[1] derive the continuum equations of motion for
gas–particle flow. Garg and co-workers[2,3] perform im-
pressive computations based upon these governing equa-
tions, obtaining bubble behaviour in a particle bed. Later,
many authors (for instance,[4–20]) improve the constitu-
tive models and/or perform simulations for various gas–solid
flows.

In 1975, Ishii[21] derives multiphase fluid–fluid govern-
ing equations from first principles, going through the details
of the derivation in great detail. The inherent assumptions
of this derivation are slightly different from the assump-
tions applied by Anderson and Jackson[1], which constrain
the types of multiphase flow to which they can be applied.
Ishii [21] also gives appropriate closure models for various
gas–liquid flow conditions.

Up till the early 1980s, most computational models for
multiphase flow on an application level describe both the
continuous phase and the dispersed phase by a so-called Eu-
lerian model. In these models the dispersed phase, like the
continuous phase, is described as a continuous fluid with ap-
propriate closures. Hence, one calculates only the average
local volume fraction, velocity, etc. and not the properties
of each individual dispersed particle or droplet. This type
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Nomenclature

a acceleration (m s−2)
c velocity (m s−1)
C fluctuating velocity (m s−1)
C empirical coefficient
Cd drag coefficient
d diameter (m)
¯̄D strain rate tensor (s−1)
e coefficient of restitution
f probability density function
f fluid phase point property
F force (kg m s−2)
Fr empirical material constant (N m−2)
g(r) weighting function
g gravitational constant (m s−2)
g velocity difference (m s−1)
g0 radial distriubtion function at particle contact
I moment of inertia (kg m2)
I interphase momentum exchange due to form

and viscous drag (N s−1)
J slip velocity (m s−1)
J impulse transfer during collision (kg m s−1)
k stiffness coefficient
L interfacial area per unit volume (m−1)
m particle mass (kg)
M total interphase momentum exchange (N s−1)
n empirical constant in frictional stress
n number density
n normal vector (m)
p empirical constant in frictional stress
P pressure (N m−2)
P impulse transfer between two particles

(kg m s−1)
q relative velocity (m s−1)
r point in space (m)
t time (s)
u velocity vector (m s−1)
U velocity component (m s−1)
v velocity vector (m s−1)
V velocity component (m s−1)
V volume (m3)
Vr ratio of terminal velocity of a group of

particles to that of an isolated particle
W velocity component (m s−1)
x position vector (m)
X phase indicator

Greek letters
β interphase drag constant (kg m−3 s−1)
γ dissipation of granular energy (kg m−3s−1)
γ angle between impact and normal
δ particle–particle overlap (m)
ε volume fraction

η damping coefficient
η =1

2(1 + e)

θ contribution due to particle collisions
Θ granular temperature (m2 s−2)
κ solids thermal conductivity (kg m−1s−1)
λ solids bulk viscosity (Pa s)
λmfp mean free path (m)
µ solids shear viscosity (Pa s)
µ friction coefficient
ξ color function
ξ tangential coefficient of restitution
ρ density (kg m−3)
σ particle radius (m)
¯̄σ total stress tensor (N m−2)
¯̄τ viscous stress tensor (N m−2)
φ particle property,any
φ angle of internal friction
χ contribution due to particle collisions
ω rotational velocity (s−1)

Subscripts
am added mass
b dispersed phase conglomerates (e.g. bubble)
drag drag
e external
e effective
f frictional
g gas phase
hist history
i interface
j either phase, not k
k either phase
kinetic kinetic theory
lift lift
min minimum; kick-in value
max maximum
p particle
r relative
s solids phase
turb turbulent
w wall

of modeling is discussed inSection 2. With the increase of
computational power, however, also the Lagrangian formu-
lation of the dispersed phase becomes feasible, but unfortu-
nately the amount of dispersed particles or droplets that can
be tracked is, even today and in the near future, very lim-
ited. However, specific features of gas–fluid or droplet–fluid
flow can be effectively studied[22–25]. This is discussed in
in Section 3.

A separate class of methods to track interfaces in fluid–
fluid flow are volume-of-fluid (VOF), level-set or front track-
ing methods. Although the idea behind these methods is
similar, their numerical implementation, and thus behaviour,
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may differ greatly. These methods describe both fluids with
one set of equations and solve another equation for the evo-
lution of the interfaces between the two fluids. The equation
prescribing the evolution of the interface may be formulated
in a Eulerian framework[26–28]or in a Lagrangian frame-
work [29,30] or in a combination of both[31]. These types
of models are described inSection 4.

2. Eulerian–Eulerian modeling

Many authors propose governing equations without cit-
ing, or incorrectly citing, a reference for the basis or deriva-
tion of the equations they employ. There are a number of
sources for the derivation of governing equations for multi-
phase systems, but the inherent assumptions in the different
derivations constrain the types of multiphase flow to which
they can be applied. There is a lot of research on the clo-
sure models for these governing equations. Here, we give
a short derivation and overview of the governing equations
for various types of multiphase flows.

2.1. Fluid–fluid flows

2.1.1. Governing equations
In a fluid–fluid formulation, both phases can be averaged

over a fixed volume, cf. Ishii[21]. This volume is relatively
large compared to the size of individual molecules. A phase
indicator function is introduced,Xk(r), which is unity when
the point r is occupied by phasek, and zero if it is not.
Averaging over this function leads to the volume fraction of
both phases,

εk = 1

V

∫
V

Xk(r)dVr (1)

whereV is the averaging volume. Since both the continu-
ous and dispersed phases are liquids, they are treated in the
same way in the averaging process. Hence, the momentum
balances for both phases are the same,

∂εkρk〈vk〉
∂t

+ ∇(εkρk〈vk〉〈vk〉)
= −∇ · (εk〈Pk〉)+ ∇ · (εk〈¯̄τk〉)+ εkρkg + Mk (2)

wherek is the phase number andMk is the interphase mo-
mentum exchange between the phases, with

∑
i M i = 0.

The density termsρk are averaged in the same way as the
velocity. The distribution of stress within both phases is im-
portant since the dispersed phase is considered as a fluid.
Hence, “jump” conditions are used to determineMk. The
interphase momentum transfer is defined as

Mk = −
∑
j

1

Lj
(Pknk − nk · ¯̄τk)

=
∑
j

1

Lj
[(〈Pki〉 − Pk)nk − 〈Pki〉nk − nk · (〈¯̄τki〉 − ¯̄τk)

+ nk · 〈 ¯̄τki〉] (3)

Table 1
The governing equations for fluid–fluid and fluid–solid flows

Continuity equations (equal for both phases)
∂ε

∂t
+ ∇(εv) = 0

Momentum equations for fluid–solid flow

ρgεg

[
∂vg

∂t
+ vg · ∇vg

]
= −εg∇P + εg∇ · ¯̄τg + εgρgg − I

ρsεs

[
∂vs

∂t
+ vs · ∇vs

]
= −εs∇P + εs∇ · ¯̄τg + ∇ · ¯̄τs

− ∇Ps + εsρsg + I

Momentum equations for fluid–fluid flow

ρiεi

[
∂vi

∂t
+ vi · ∇vi

]
= −εi∇P + ∇ · εi ¯̄τi + εiρig − I

ρjεj

[
∂vj

∂t
+ vj · ∇vj

]
= −εj∇P + ∇ · εj ¯̄τj + εjρjg + I

where 1/Lj is the interfacial area per unit volume,Pk is the
pressure in the bulk of phasek, 〈Pki〉 is the average pressure
of phasek at the interface,̄̄τk the shear stress in the bulk,
and〈¯̄τki〉 represents the average shear stress at the interface.
Mass transfer between the phases is not assumed. The terms
(〈Pki〉−Pk)nk andnk(〈¯̄τki〉− ¯̄τk) are identified by Ishii[21]
as the form drag and the viscous drag, respectively, making
up the total drag force. The other terms can be written out as

Mk=I+〈Pk〉∇εk+(〈Pki〉−〈Pk〉)∇εk − (∇εk) · 〈 ¯̄τki〉 (4)

whereI represents the total form and viscous drag. Accord-
ing to Ishii and Mishima[32], the last term on the right hand
side is an interfacial shear term which is important in a sep-
arated flow. According to Ishii[21], the term(〈Pki〉 − 〈Pk〉)
only plays a role when the pressure at the bulk is signif-
icantly different from that at the interface as in stratified
flows. For many applications both terms are negligible, and

Mk = I + 〈Pk〉∇εk (5)

The final resulting governing equations are shown inTable 1.

2.1.2. Closure models
In the Euler–Euler concept, sometimes called the two-

fluid approach, both the continuous and dispersed phases are
considered as continuous media. These models incorporate
two-way coupling, which is especially important for high
voidage flows. A drawback of these models is, however, that
they need complex closure relations.

The interfacial momentum transfer between the liquid and
the gas includes a number of force contributions,

I = Idrag+ Iam + Ihist + I turb + I lift (6)

whereIdrag denotes the form and viscous drag,Iam denotes
the added mass force which is an inertial force caused by rel-
ative acceleration,Ihist is the history or Basset force, which
is a viscous force caused by relative acceleration,I turb de-
notes the effect of turbulent fluctuations on the effective mo-
mentum transfer, andI lift is the lift force which denotes the
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transverse force caused by rotational strain, velocity gradi-
ents, or the presence of walls[9].

The drag force represents the mean interphase momentum
transfer coming from the local perturbations induced by the
dispersed phase

Idrag = εjρj

〈
ρk

ρj

3

4

Cd

db
|vr|vr

〉
(7)

wheredb is the average size of the dispersed phase con-
glomerates (e.g. bubbles),Cd the drag coefficient[33], and
vr is the local relative velocity between the dispersed phase
and the surrounding fluid flow. This expression for the drag
is valid for relative dilute systems. As the dispersed frac-
tion increases, the effect of mutual hindrance between the
dispersed phase conglomerates plays an increasing role, and
this effect is not taken into account. Expressions to deter-
mine the drag at high dispersed phase fractions are highly
empirical of nature and applicable to a limited number of
systems[34].

The added mass force takes into account the inertial forces
due to the relative acceleration between the phases. A general
equation for this force is given by

Iam = εjρkCam

(
Dkvk

Dt
− Djvj

Dt

)
(8)

where the added mass coefficient,Cam, is a function of the
volume fraction[35].

The history force is a viscous force due to the relative
acceleration between the two phases. Most often, this force
is ignored in continuum modelling, and there is not even
full agreement of its formulation even for the single bubble
case[34]. Drew and Lahey[36] give an expression for the
history force combined with the lift force,

Ihist = 9

dp
εk

√
ρjµj

π

∫ t

0

a(r, t)√
t − τ

dτ (9)

where the appropriate frame-indifferent acceleration, ac-
cording to[36], is given by

a(r, t) =
(
Djuj

Dt
− Djuj

Dt

)
− (uj − uj)× (∇ × uj) (10)

The effect of turbulence on interphase momentum transfer
is largely unknown. An important turbulent effect comes in
the form and viscous drag. The relative velocity,vr, in this
equation should contain the averages of fluctuating velocity,
sometimes referred by as the turbulent drift velocity[5]. This
type of models typically leads to dispersive forces (∼∇εj).

The lift force represents the transverse force due to rota-
tional strain, velocity gradients, or the presence of walls. A
general equation for the lift force caused by rotational strain
is given by

I lift ,r = εjρiCli ,r(vj − vi)× Ω (11)

and the equation for the lift force caused by velocity gradi-
ents is given by

I lift ,v = εjρiCli ,v(vj − vi)× (∇ × vi) (12)

whereCli ,r andCli ,v are the lift force coefficients associated
with rotational strain and velocity gradients, respectively.
From laminar, inviscid flow the value of 1/2 can be deter-
mined for the lift force coefficient for rotational strain. In lit-
erature, a wide range of values can be found for the lift force
coefficient, as the above equations originates from inviscid
flow around a single sphere. Tomiyama et al.[37] have per-
formed experiments of single bubbles in simple shear flows
and have found positive and negative values for the lift force
coefficient, depending upon the specific bubble characteris-
tics. According to Lathouwers[34] the lift force coefficient
in multiple bubble modelling is sometimes used to correct
for other effects unaccounted for by present models.

2.2. Fluid–solid flows

2.2.1. Governing equations
Anderson and Jackson[1] and Jackson[38,39] use a for-

mal mathematical definition of local mean variables to trans-
late the point Navier–Stokes equations for the fluid and the
Newton’s equation of motion for a single particle directly
into continuum equations representing momentum balances
for the fluid and solid phases. The point variables are av-
eraged over regions large with respect to the particle diam-
eter but small with respect to the characteristic dimension
of the complete system. A weighting function,g(|x − y|),
is introduced in forming the local averages of system point
variables, where|x − y| denotes the separation of two arbi-
trary points in space. The integral ofg over the total space
is normalized to unity:

4π
∫ ∞

0
g(r)r2 dr = 1 (13)

The ‘radius’l of functiong is defined by∫ l

0
g(r)r2 dr =

∫ ∞

l

g(r)r2 dr (14)

Providedg is chosen so thatl satisfiesa � l � L, wherea
is the particle radius andL is the shortest macroscopic length
scale, averages defined should not depend significantly on
the particular functional form ofg or its radius.

The gas-phase volume fractionεg(x) and the particle
number densityn(x) at point x are directly related to the
weighting functiong:

εg(x) =
∫
Vg

g(|x − y|)dVy (15)

n(x) =
∑
p

g(|x − xp|) (16)

whereVg is the fluid phase volume, andxp is the position
of the center of particlep. The local mean value of the fluid
phase point properties,〈f 〉g is defined by

εg(x)〈f 〉g(x) =
∫
Vg

f (y)g(|x − y|)dVy (17)
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The solid-phase averages are not defined analogous to the
continuous fluid phase averages since the motion of the solid
phase is determined with respect to the center of the particle
and average properties need only depend on the properties
of the particle as a whole. Hence, the local mean value of
the solid-phase point properties is defined by

n(x)〈f 〉s(x) =
∑
p

f sg(|x − xp|) (18)

The average space and time derivatives for the fluid and solid
phases follow from the above definitions. The averaging
rules are then applied to the point continuity and momentum
balances for the fluid. For the solid phase, the averaging rules
are applied to the equation of motion of a single particlep:

ρsVp
∂vs

∂t
=

∫
Sp

¯̄σg(y)n(y)dsy +
∑
q �=p

f qp + ρsVpg (19)

wherevs is the particle velocity,ρs is the particle density,Vp
is the volume of particlep, ¯̄σg is the gas-phase stress tensor,
Sp denotes the surface of particlep, andf qp represents the
resultant force exerted on the particlep from contacts with
other particles.

The resulting momentum balances for the fluid and solid
phases, dropping the averaging brackets〈 〉 on the variables,
are as follows:

ρgεg

[
∂

∂t
vg + vg · ∇vg

]

= ∇(εg ¯̄σg)−
∑
p

∫
Sp

¯̄σg · n(y)g|x − y| dsy + ρgεgg

(20)

ρsεs

[
∂

∂t
vs + vs · ∇vs

]

=
∑
p

g|x − xp|
∫
Sp

¯̄σgn(y)dsy + ∇ · ¯̄σs + ρsεsg (21)

The first term on the right hand side of the gas phase equa-
tion of motion represents the effect of stresses in the gas
phase, the second term on the right hand side represents the
traction exerted on the gas phase by the particle surfaces,
and the third term represents the gravity force on the fluid.
The first term on the right hand side of the solid-phase equa-
tion of motion represents the forces exerted on the particles
by the fluid, the second term on the right hand side rep-
resents the force due to solid-solid contacts, which can be
described using concepts from kinetic theory, and the third
term represents the gravity force on the particles. The aver-
aged shear tensor of the gas phase can be rewritten with the
Newtonian definition as

¯̄σg = −Pg
¯̄I + µg

εg
(∇vg + (∇vg)

T) (22)

where the gas phase volume fraction is introduced in the
volume averaging process.

Note that the forces due to fluid traction are treated dif-
ferently in the fluid- and solid-phase momentum balances.
In the particle phase, only the resultant force acting on the
center of the particle is relevant; the distribution of stress
within each particle is not needed to determine its motion.
Hence, in the solid-phase momentum balance, the resultant
forces due to fluid traction acting everywhere on the sur-
face of the particles are calculated first, then these are av-
eraged to the particle centers. In the fluid-phase momentum
balance, the traction forces fluid–solid interaction are calcu-
lated at the particle surface, and are employed there. Hence,
the fluid-phase traction term is given as

∑
p

∫
Sp

¯̄σg · n(y)g|x − y| dsy

=
∑
p

g|x − xp|
∫
Sp

¯̄σg · n(y)dsy

− ∇

a∑

p

g|x−xp|
∫
Sp

( ¯̄σg · n(y))n(y)dsy


 +O(∇2)

(23)

which is a result of a Taylor series expansion ing|x − y|
about the center of the particle with radiusa. Here, terms of
O(∇2) and higher have been neglected. Note that the first
term on the right hand side ofEq. (23) is the same as the
fluid traction term in the particle-phase momentum balance.
The difference in the manner in which the resultant forces
due to fluid traction act on the surfaces of the particles is
a key distinction between the Jackson (seeEq. (23)) and
Ishii (Eq. (3)) formulations. In the Ishii[21] formulation,
applicable to fluid droplets, the fluid-droplet traction term is
the same in the gas phase and the dispersed phase governing
equations.

The integrals involving the traction on a particle surface
have been derived by[40] and are given in[38]

∑
p

g|x − xp|
∫
Sp

¯̄σg · n(y)dsy = I

εs
+ ρgεsg + ρgεs

Dgvg

Dt

(24)

∇

a∑

p

g|x − xp|
∫
Sp

( ¯̄σg · n(y))n(y)dsy


 = −∇(εsPg)

(25)

whereI is the interphase momentum transfer coefficient,
including viscous and form drag, lift force, etc. The final
governing equations are presented inTable 1.

Comparing the fluid–fluid and fluid–solid momentum bal-
ances fromTable 1, the differences are two-fold. First, in the
fluid–solid case, the solid volume fraction multiplied by the
gradient of the total gas-phase stress tensor in included in
the solid-phase momentum balance. In the fluid–fluid case,
only the solid volume fraction multiplied by the gradient
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of the pressure is included. Secondly, in the fluid–fluid ap-
proach in the gas-phase momentum balance, the pressure
carries the gas volume fraction outside the gradient opera-
tor; the shear stress carries the gas volume fraction inside the
gradient operator. In the fluid–solid approach both stresses
are treated equally with respect to the gas volume fraction
and the gradient operators. When the gas phase shear stress
plays an important role, these differences may be significant
near large gradients of volume fraction, i.e. near interfaces.
Some authors employ liquid–liquid governing equations to
describe gas–solid flows (for instance[4,9]) and the impact
of the discrepancy between the two sets of governing equa-
tions depends upon the application[20].

2.2.2. Closure models

2.2.2.1. Interphase momentum transfer.In dilute flows,
the interphase momentum transfer due to form and viscous
drag is modelled with a model after the drag on a single
particle in an infinite fluid, with the same equation as in
fluid–fluid flow:

Idrag = εsρg

〈
ρg

ρs

3

4

Cd

dp
|vr|vr

〉
(26)

whereCd is the drag coefficient[33,41], dp is the average
local particle diameter, andvr is the relative local velocity
between the fluid and the solid phase. Although most authors
take this relative velocity as the difference of the local fluid
and the solid velocities, this is formally not correct; the
undisturbed turbulent fluid velocity should be used instead.
This is discussed later on.

In more dense flows, the form drag and viscous drag are
generally combined in one empirical parameter, the inter-
phase drag constantβ, in the modeling of the momentum
transfer between the two phases. The interphase momentum
transfer is then written as

Idrag = βvr (27)

The drag coefficientβ is typically obtained experimentally
from pressure drop measurements in fixed, fluidized, or set-
tling beds, or by volume fraction dependent sedimentation
experiments[42]. Ergun [43] performed measurements in
fixed liquid–solid beds at packed conditions to determine
the pressure drop. Based upon this model, Gidaspow[12]
proposed the drag model:

β=




150
ε2

sµg

(1 − εs)d2
s

+ 7

4

εsρg|vg − vs|
ds

, if εs > 0.2

3

4
Cd
(1 − εs)εsρg|vg − vs|

ds
(1 − εs)

−2.65, if εs ≤ 0.2

(28)

Wen and Yu[44] have performed settling experiments of
solid particles in a liquid over a wide range of solid volume
fractions and have correlated their data and that of others

for solids concentrations applying the Richardson and Zaki
correction factor[42]. 0.01 ≤ εs ≤ 0.63:

β = 3

4
Cd
(1 − εs)εsρg|vg − vs|

ds
(1 − εs)

−2.65 (29)

Both equations lead to similar results[20].

2.2.2.2. Kinetic theory of granular flow.When the gov-
erning equations derived in the previous section are used
to predict the behaviour of fluid–solid flows, closures are
required. Closure of the solid-phase momentum equation
requires a description for the solid-phase stress. When col-
lisional interactions play an important role in the motion
of the particles, concepts from kinetic gas theory[45] can
be used to describe the effective stresses in the solid phase
resulting from particle streaming (kinetic contribution) and
direct collisions (collisional contribution). Constitutive re-
lations for the solid-phase stress based on kinetic theory
concepts have been derived by Lun et al.[46] allowing for
the inelastic nature of particle collisions.

The derivation of the closures start with the Boltzmann
description of a mixture of particles. The distribution of ve-
locities among a large number of particles in a volume ele-
ment dr can be represented by the distribution of their veloc-
ity pointsc in the velocity space. The number density of this
volume element will generally be a function of the location
in space,r, of the time,t, as well of the velocityc. There-
fore, the number density of the particles at volumer with
velocity c at time t is denoted byf(c, r, t). This definition
implies that the probable number of particles which at time
t are situated in the volume element(r, r + dr), and have
velocities lying in the range(c, c + dc) is f(c, r, t)dc dr,
wheref is called theprobability density function.

We consider particles in which each particle is subject to
an external force with accelerationa. Between timest and
t + dt the velocityc of any particle that does not collide
with another particle will change toc+a dt, and its position
vector r will change tor + c dt. The number of particles
f(c, r, t)dc dr at time t is equal to the number of particles
f(c+a dt, r+c dt, t+dt)dc dr if collisions between particles
are neglected. The change inf over dt is caused only by
collisions of particles:

{f(c + a dt, r + c dt, t + dt)− f(c, r, t)} dc dr

= ∂ef

∂t
dc dr dt (30)

where∂ef/∂t is the rate of change off at a fixed point due
to particle collisions. By dividing by dcdr dt and makingdt
tend to zero, Boltzmann’s equation forf is obtained:

∂f

∂t
+ c · ∇f + a

∂f

∂c
= ∂ef

∂t
(31)

or

Df = ∂ef

∂t
(32)

whereDf denotes the left hand side ofEq. (31).
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Now, let φ be any particle property. If the Boltzmann
equation is multiplied byφdc and integrated over the
velocity-space, the equation of change of particle properties
is obtained:∫
φDf dc = nC(φ) (33)

in which the right hand term denotes the influence of bi-
nary, instantaneous collisions, so it is the integrated form of
∂ef/∂t. For convenience, the fluctuating velocityC is used
as an independent variable instead ofc:

C ≡ c − 〈c〉 (34)

The dependency off should also be changed toC, for
example, for∂f(C)/∂t

∂f(c − 〈c〉)
∂t

= ∂f

∂C

∂C

∂t
= ∂f

∂C

∂(c − 〈c〉)
∂t

= −∂〈c〉
∂t

∂f

∂C
+ ∂f

∂t

∂c

∂C
(35)

Hence,∂f/∂t and∂f/∂r have to be replaced by, respectively,

∂f

∂t
− ∂〈c〉

∂t

∂f

∂C
and

∂f

∂r
− ∂〈c〉

∂r

∂f

∂C

in order to take account of the dependence off on t andr

through the dependence ofC on c. Hence, the expression
for Df becomes

∂f

∂t
− ∂〈c〉

∂t

∂f

∂C
+ (〈c〉 + C)

(
∂f

∂r
− ∂〈c〉

∂r

∂f

∂C

)
+ a

∂f

∂C
(36)

Now the ‘mobile operator’ or ‘time-derivative following the
motion’ is introduced as

D

Dt
= ∂

∂t
+ 〈c〉 ∂

∂r

This is the time derivative following the mean flow. Then

Df = Df

Dt
+ C

∂f

∂r
+ a

∂f

∂C
− D〈c〉

Dt

∂f

∂C
− ∂f

∂C
C :

∂〈c〉
∂r

(37)

With this, Eq. (33)can be rewritten into∫
φ

(
Df

Dt
+ C

∂f

∂r
+ a

∂f

∂C
− D〈c〉

Dt

∂f

∂C
− ∂f

∂C
C :

∂〈c〉
∂r

)
dC

= nC(φ) (38)

For further development of this equation, the following in-
tegrals are used for the transformation:∫
φ

Df

Dt
dC = D

Dt

∫
φf dC −

∫
Dφ

Dt
f dC

= D(n〈φ〉)
Dt

− n

〈
Dφ

Dt

〉
(39)

∫
φC

∂f

∂r
dC = ∂

∂r
·
∫
φCf dC −

∫
∂φ

∂r
· Cf dC

= ∂n〈φC〉
∂r

− n

〈
C
∂φ

∂r

〉
(40)

∫
φ
∂f

∂C
dC = [φf ]U,V,W=∞

U,V,W=−∞ −
∫
∂φ

∂C
f dC = −n

〈
∂φ

∂C

〉
(41)

in which φf → 0 as any velocity component approaches
±∞. By the same argument∫
φ
∂f

∂C
C dC = −n

〈
∂φC

∂C

〉
= −n〈φ〉 − n

〈
∂φ

∂C
C

〉
(42)

Using these results, we obtain the Enskog equation, which
is a generalization of Maxwell’s equation:

nC(φ)= Dn〈φ〉
Dt

+ n〈φ〉∂〈c〉
∂r

+ ∂n〈φC〉
∂r

− n

[〈
Dφ

Dt

〉
+

〈
C
∂φ

∂r

〉
+

〈
a
∂φ

∂C

〉

− D〈c〉
Dt

·
〈
∂φ

∂C

〉
−

〈
∂φ

∂C
C

〉
:
∂〈c〉
∂r

]
(43)

Settingφ = 1, the mass balance is obtained:

Dn

Dt
+ n

∂〈c〉
∂r

= 0 (44)

This equation is also called the equation of continuity, ex-
pressing the conservation of the number of particles in the
suspension. Inserting the equation of continuity into the En-
skog equation (Eq. (43)), simplifies the Enskog equation to

nC(φ)= n
D〈φ〉

Dt
+ ∂n〈φC〉

∂r

− n

[〈
Dφ

Dt

〉
+

〈
C
∂φ

∂r

〉
+

〈
a
∂φ

∂C

〉
− D〈c〉

Dt

〈
∂φ

∂C

〉

−
〈
∂φ

∂C
C

〉
:
∂〈c〉
∂r

]
(45)

With φ = C, this simplified Enskog equation corresponds
to the balance of linear momentum:

n
D〈c〉
Dt

+ ∂n〈CC〉
∂r

= n〈a〉 + nC(C) (46)

because〈C〉 = 0. The first term denotes the change, fol-
lowing the motion, of momentum. The second term denotes
the stress tensor due to particle movement. The first term
on the right hand side represent the external body-forces, as
fluid influences and gravity. The last term on the right hand
side denotes the momentum change due to collisions. The
momentum equation and the continuity equation are identi-
cal with the equations of continuity and momentum derived
for a continuous fluid in hydrodynamics. This provides a
justification for the hydrodynamical treatment of a particle
suspension.

With φ = CC, the mean of the second moment of velocity
fluctuation is obtained from the simplified Enskog equation:

n
D〈CC〉

Dt
+ ∂n〈CCC〉

∂r
= −2n〈CC〉 :

∂〈c〉
∂r

+ 2n〈aC〉
+ nC(CC) (47)
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The first term denotes the change of the second moment of
velocity fluctuation. The second term represents the third
moment of velocity fluctuation. The first term on the right
hand side represents the transport of the second moment
of velocity fluctuation due to the average velocity of the
particles. The second term on the right hand side represents
the influence of the external forces. It can be readily seen,
that if the force does not depend onC, this term vanishes.
The last term represents the influences of collisions on the
second moment of velocity fluctuation. The balance of third
moment of velocity fluctuation is obtained by insertingφ =
CCC:

n
D〈CCC〉

Dt
+ ∂n〈CCCC〉

∂r
= −3n〈CCC〉 :

∂〈c〉
∂r

+ 3n〈aCC〉

+ 3n〈CC〉〈c〉∂〈c〉
∂r

+ nC(CC)

(48)

Balances of higher order momenta are fairly easily gener-
ated. However, most methods only consider up to second
order, and the third order term is closed with a Boussinesq
approximation, e.g.

〈CCCC〉 = −ηe∇CCC (49)

whereηe is the effective viscosity, which can be related to
the mean free path of the particles.

In kinetic theory for granular flow, collisions are con-
sidered binary and instantaneous. Since only smooth and
spherically symmetrical particles are considered, the force
which either exerts on the other is directed along the line
joining their centers. Moreover, rotation is not considered. It
is supposed that the effect of any external force which acts
on the particle during collision can be neglected compared
to the dynamic effect of the collision. With these assump-
tions, the velocities before and after a collision have def-
inite values, which are denotedci, cj before the collision,
andc′

i, c
′
j after the collision. The details of the collision it-

self are of no importance for the theory; it is only impor-
tant to know the relation between the initial and the final
velocities.

Before the collision, the relative velocity of the two parti-
cles isg ≡ (ci − cj), and by definitiong · n > 0 (otherwise
the particles move away from each other), wheren is the
normal unit vector lying in the direction of the vector join-
ing the center of the two particles, defined with its origin at
the point of contact (seeFig. 1). The collision impulseP
exerted by particlej on particlei is directed along the line
connecting the centers,

P = mi(c
′
i − ci) = −mj(c′

j − cj) (50)

P can be obtained by characterizing the incomplete restitu-
tion of the normal component of the relative velocity, using
the coefficient of restitutione, with 0 ≤ e ≤ 1:

g′ · n = −eg · n (51)

mj

m i c

c

i

jn

g
c

ci

j−

Fig. 1. A pair of colliding particles.

With Eqs. (50) and (51), the equation forP can be derived:

P = − mimj

mi +mj
(1 + e)(g · n)n (52)

Consider the motion of the center of particlej relative to the
center of the first particle, i.e. relative to axes moving with
the center of particlei (seeFig. 2). For such a collision to
occur, the center of particlej must cut a plane through(σi+
σj)

2n dn, whereσi represents the radius of particlei. Hence,
the center of particlej must lie in a volume(g dt)[(σi +
σj)

2n dn]. In a collision between two particles, the valueφj,
representing a property of particlej, is changed toφ′

j. Thus
the particle propertyφ for this particle is changed by the
amountφ′

j − φj. The change in
∑
φj due to all collisions

where particlei has a velocity in(ci, ci + dci), particlej
has a velocity in(cj, cj +dcj), occurring in the direction in
(n,n + dn), and in time(t, t + dt) is

(φ′
j − φj)f(2)(ci, r i, cj, r i + (σi + σj)n, t)(σi + σj)

2

× (g · n)dn dci dcj dr dt (53)

f(2)(ci, r i, cj, rj, t) represents the pair probability density
function, indicating the number density of a pair of particles,
where the first particle is located atr i with velocity ci, and
the second particle located atrj with velocity cj at time t.
f(2) characterizes the statistics of binary collisions.

Integration over all values ofc1 and c2 gives the total
change duringdt in

∑
φi, summed over all particles in dr,

due to collisions. Since the number of particles in dr is

n

Fig. 2. The outlines of two possible colliding particles. Both particles
must lie in a volume(g dt)[(σi + σj)

2n dn] to possibly collide.
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ndr, this integral must equalndrC(φ)dt. Dividing by dr dt
results in:

nC(φ)j =
∫∫∫

g·n>0
(φ′
j − φj)f(2)(ci, r i, cj, r i

+ (σi + σj)n, t)(σi + σj)
2(g · n)dn dci dcj (54)

where the conditiong · n > 0 indicates that the integration
is to be taken over all values ofn, ci, andc2 for which a
collision is impending. For the particlej the rate of increase
of propertyφ can be found by the same arguments as above,
only by interchanging the roles of the colliding particles by
interchanging subscriptsi andj and replacingn by −n. This
contribution may thus be written as

nC(φ)i =
∫∫∫

g·n>0
(φ′
i−φi)f(2)(ci, rj−(σi + σj)n, cj, rj)

× (σi + σj)
2(g · n)dn dci dcj (55)

In early development of kinetic theory, the pair probability
distribution function was expressed as the product of the two
individual probability distribution functions:

f(2)(ci, r i, cj, rj, t) ≈ f(ci, r i, t)f(cj, rj, t) (56)

This is called the assumption ofmolecular chaos. In the
molecular chaos assumption, particles are assumed to be
randomly distributed, without their volume playing a role.
Hence, particles may overlap. In very dilute systems this
may not lead to a large error, as the chance that two particles
overlap is very small. For denser gases,Eq. (56)is rewritten
as

f(2)(ci, r i, cj, rj, t) ≈ g0f(ci, r i, t)f(cj, rj, t) (57)

whereg0 is called the radial distribution function at contact.
g0 is equal to one for a dilute particle system, and increases
with increasing particle number density, becoming infinite
as the particle system approaches the state in which the parti-
cles are packed so closely together that motion is impossible.
The effect ofg0 is to reduce the volume in which the center
of any particle can lie, and so to increase the probability of
a collision. By the first assumption of molecular chaos,g0
is only a function of the position and not a function of the
velocity. The functiong0 needs only to be evaluated at the
point of contact and not for every position in the system.

The above equation assumes that the two probabilitiesfi
andfj are uncorrelated. However, in most practical flows,
this will not be the case, but there will be a correlation
between the probability density functions of two nearby
particles. Simonin and co-workers[22] have researched this
influence, and it is not discussed here.

The integrals,Eqs. (54) and (55), are solved by Lun et al.
[46] by using the Enskog series expansion[45] and by Jenk-
ins and Richman[47] employing Grads 13 moment system
[48]. For the momentum equations, the collisional contribu-
tion is written in the form

nC(φ) = χ(φ)− ∂Θ(φ)

∂r
− ∂〈c〉

∂r
Θ

(
∂φ

∂C

)
(58)

whereΘ is the transfer contribution, due to the transport of
φ during collision, andχ is a source-like contribution, due
to the change of propertyφ during collision. Note that the
derivative in the parenthesis of the last term is an argument
to the functionΘ.

The stress tensor and the flux of fluctuating velocity are

ρ〈CC〉 = ρ

3
〈C2〉¯̄I − 2µ

η(2 − η)g0

[
1 + 8

5
η(3η− 2)εsg0

]
¯̄D

(59)

1

2
ρ〈C2C〉 = − ζ

g0

{[
1 + 12

5
η2(4η− 3)εsg0

]
∇

(
1

3
〈C2〉

)

+ 12

5
η(2η− 1)(η− 1)

d

dεs
(ε2

sg0)
〈C2〉
3n

∇n
}
(60)

with the abbreviations

ζ = 8λ

η(41− 33η)
(61)

λ = 75m
√

〈C2〉/3π
64σ2

(62)

η = 1
2(1 + e) (63)

µ = 5m(〈C2〉/3π)
15σ2

(64)

εs = nm

ρ
= n

V
(65)

¯̄D = 1
2(∇〈c〉 + {∇〈c〉}T)− 1

3(∇ · 〈c〉¯̄I) (66)

For the momentum equation, the source like contribution,
χ, is zero, and thus only the transport contributionΘ re-
mains. Thus, the total collisional contribution to the momen-
tum equation has the exact same form as the stress tensor.
Therefore, most researchers denote this contribution as ‘the
collisional contribution to the particle–particle stress’. The
term for the momentum equation is

¯̄Θmomentum≡ ¯̄Pc = 4

3
ρ〈C2〉ηεsg0

¯̄I

− 16µεs

5(2 − η)

[
1 + 8

5
η(3η− 2)εsg0

]
¯̄D

− 256

5π
ηµε2

2g0

[
6

5
¯̄D+ (∇ · 〈c〉) ¯̄I

]
(67)

These equations can be directly used to solve the ensemble
averaged momentum equations for a granular material, as
they can be transformed to the hydrodynamic definitions of
viscosities and normal pressure. For the energy equation,
bothΘ andχ are non-zero. The form ofΘ is added in the
same form as the flux of fluctuating energy, and is therefore
often described as the addition to the flux of fluctuating
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energy due to collisions. These terms are

Θenergy≡ qc

= −12ηζεs

5

{[
1 + 12

5
η2(4η− 3)εsg0

+ 16

15π
(41− 33η)ηεsg0

]

× ∇
(

1

3
〈C2〉

)
12

5
η(2η− 1)

× (η− 1)
d

dεs
(ε2

sg0)
〈C2〉
3n

∇n
}

(68)

χenergy= 48√
π
η(1 − η)

ρε2

σ
g0

( 〈C2〉
3

)3/2

(69)

Inserting e = 1 (η = 1) into Eq. (69) leads toχ = 0,
which shows that the energy equation becomes a conserved
quantity for systems where collisions are fully elastic.

A CFD simulation of a dense gas–solid fluidized bed is
shown inFig. 3. This simulation has employed the kinetic
theory of granular flow combined with the interphase mo-
mentum transfer model of Wen and Yu. It is shown by nu-
merous authors[5,8–10,49–54]that simulations of fluidized
beds can give good qualitative prediction.

2.2.3. Dense particle flows
In dense-phase flows, such as fluidized beds, the fluctu-

ating velocity of the fluid phase and its correlation with the

Fig. 3. A snapshot of a transient CFD simulation of a gas–solid fluidized
bed. The color indicates the solid volume fraction, red high solids volume
fraction, and blue for high gas volume fraction. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

properties of particles are negligible compared to particle–
particle interactions (collisions and friction) and the mean
fluid-particle velocity coupling (drag). Therefore, the fluid
phase is often modelled as laminar and fluid property
correlations with the fluctuating particle velocities are
omitted.

At high solids volume fraction, sustained contacts be-
tween particles occur. The resulting frictional stresses must
be accounted for in the description of the solid-phase
stress. Zhang and Rauenzahn[55] conclude that particle
collisions are no longer instantaneous at very high solids
volume fractions, as is assumed in kinetic theory. Several
approaches have been presented in the literature to model
the frictional stress for dense packed particles, mostly orig-
inating from geological research groups. Typically, the fric-
tional stress,̄̄σf , is written in an incompressible Newtonian
form:

¯̄σf = Pf
¯̄I + µf (∇v + (∇v)T) (70)

The frictional stress is added to the stress predicted by
kinetic theory forεs > εs,min:

Ps = Pkinetic + Pf (71)

µs = µkinetic + µf (72)

Johnson and Jackson[56] propose a semi-empirical equation
for the frictional pressure,Pf

Pf = Fr
(εs − εs,min)

n

(εs,max − εs)p
(73)

where Fr,n, andp are empirical material constants. This
expression is valid forεs > εs,min, whereεs,min is the solids
volume fraction at which frictional stresses become impor-
tant. The order of magnitude of the frictional pressure, with
material constants determined by various authors, is shown
in Fig. 4. The frictional viscosity is then related to the fric-
tional pressure by the linear law proposed by Coulomb[60],
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Fig. 4. The normal frictional stress with empirical constants from[57–59].
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Fig. 5. The axial solids volume fraction profile for 2 values of the particle
restitution coefficient.

or Schaeffer[61]:

µf = Pf sinφ

εs

√
(1/6)((∂us/∂x− ∂vs/∂y)

2 + (∂vs/∂y)
2

+ (∂us/∂x)
2)+ (1/4)(∂us/∂y + ∂vs/∂x)

2

(74)

The stresses in the dense regime predicted by frictional stress
models are typically much larger than those predicted by
kinetic theory. A comparison by Srivastava and Sundaresan
[62] shows that the above model is as suitable for dense
gas–solid flow as more complex frictional stress models.

2.2.4. Dilute particle flows
The kinetic theory as derived by[46] is able to predict

many types of complex gas–solid flows. Sundaresan and
co-workers[63], however, showed that this model exhibits a
very strong, unrealistic degree of sensitivity to the coefficient
of restitution,e. To illustrate this sensitivity,Fig. 5 shows
the solids volume fraction in a one dimensional vertical pipe
flow for e = 1 and 0.99. Although the prediction is fairly
good fore = 1, as shown in[17], this value ofe is unrealistic.
Lower values ofe give a completely incorrect prediction
of the location of the solids in the tube, as was pointed
out by [64]. Almstedt and Ljus showed that in horizontal
gas–particle pipe-flow, without applying kinetic theory, the
modelling results are even worse, leading to that all the solids
fall to the bottom of the pipe[19].

One of the important things that are missing to obtain a
model suitable for dilute gas–solid flow is gas-phase turbu-
lence. While the magnitude of the gas-phase turbulence is
negligible in dense gas–solid flow, it may play a major role
in more dilute flows. Several authors have researched the
gas-phase turbulence terms, which are present in the diffu-
sion term after closing them with a eddy viscosity model
[65,66], and these models were successful in predicting the
flow of extremely dilute flows. However, at slightly more
dense flows, when the drag between the gas and the solids

becomes important, the gas-phase turbulence becomes rela-
tively insignificant and the unrealistic volume fraction con-
tours reappear.

Elgobashi and Abou-Arab[67] performed a Reynolds de-
composition of the Eulerian two-fluid equations and found
a large number of terms arising from this. Hrenya and Sin-
clair [64] have modelled three of the time averaged terms
arising from this decomposition with the eddy mixing length
gradient assumption. They found significant improvement
of the results, with solids volume fraction contours similar
to experimental data. Although Ljus[19] did not use ki-
netic theory, they found the same improvement for horizon-
tal pipe-flow.

The type of time-averaging that[19,64] proposed, gives
rise to an additional term in the continuity equation. Apart
from the problems with numerical scheme this introduces, it
also introduces scaling in the eddy viscosity coefficient with
the volume fraction. When using Favre averaging instead,
the only additional terms arise in the momentum equations.
The most important term arises as the correlation between
the fluctuating particle velocity and the fluctuating particle
volume fraction. When this term is closed with a gradient
assumption, this leads to additional dispersion terms in the
momentum balance of the order ofβ∇ε.

Simonin and co-workers[5,14] have used a different
expression for the interphase momentum transfer. In their
model, they use not the averaged gas velocity as-is, but
recognize that the undisturbed local fluid turbulent veloc-
ity should be used instead. The differing term, called the
turbulent drift velocity[68], can be modelled with a dis-
persion coefficient and the gradients of the solids and fluid
volume fraction. Hence, the form of the dispersive term is
the same as obtained from Favre averaging. The advantage
with using the turbulent drift velocity is that it gives the
order of magnitude of the coefficients in the model, as well
as it dependency upon other flow properties.

3. Lagrangian modeling of the dispersed phase

3.1. Fluid–solid modeling

With increasing computer power, discrete particle mod-
els, or Lagrangian models, have become a very useful
and versatile tool to study the hydrodynamic behavior of
particulate flows. In these models, the Newtonian equa-
tions of motion are solved for each individual particle,
and a collision model is applied to handle particle en-
counters. Recently, such particle models have been com-
bined with an Eulerian model for the continuous phase
to simulate freely bubbling and circulating fluidized beds
[25,69–71].

3.1.1. Fluid phase
The motion of the fluid phase is calculated from the

averaged fluid-phase governing equations as presented in
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Section 2.2.1. The continuity equation for the fluid phase is

∂εgρg

∂t
+ ∇ · εgvg = 0 (75)

and the momentum balance is

∂εgρgvg

∂t
+ ∇(εgρgvgvg)

= −εg∇P + εg∇ · ¯̄τg + εgρgg

−
∑K

i=1Vs,iβ(vg − vs,i)δ(x − xs,i)∑K
i=1Vs,i

(76)

where the compressible fluid phase stress tensor is defined
as

¯̄τg = 2µ ¯̄Dg − 2
3µ tr( ¯̄Dg)

¯̄I (77)

where ¯̄Dg is the strain rate tensor,

¯̄Dg = 1
2(∇vg + (∇vg)

T) (78)

andµ the fluid-phase viscosity.
The last term inEq. (76) represents the interphase mo-

mentum transfer between the fluid phase and each individ-
ual particle.δ represents a pulse function, which is one if
its argument is zero and zero otherwise. The last term is to
ensure that the interphase momentum transfer is only taken
into account in the fluid-phase momentum equation at the
location of the corresponding particle. As was indicated
earlier, a problem of this Lagrangian–Eulerian approach is
the length-scale of the averaging. In the Eulerian–Eulerian
approach the length scales of the averaged fluid- and
particle-phase are equal and the “sub-grid” behavior of the
particles is described with the kinetic theory of granular
flow. In the Lagrangian–Eulerian approach, the length-scale
of the fluid-phase is larger than the length-scale of the par-
ticle phase. The information of fluid induced movement of
particles, as well as particle induced movement of fluid,
cannot be transferred between the phases on the eddy or
individual particle scale. Hence, a computational cell in
which a small cluster of particles is present is penetrated by
the fluid-phase, similar as a fixed porous medium and the
fluid phase does not discriminate between homogeneously
distributed particles or clustered particles within one cell.
In reality, the fluid-phase “dodges” the particle clusters.
Particle clustering due to the local fluid flow (“micro-scale”
clustering) is thus not captured in the Lagrangian–Eulerian
approach. This shortcomings of the outlined model, in the
particle–fluid phase coupling, should be well kept in mind
when attempting to use this simulation method. So-called
“true” direct numerical simulations can be carried out to
solve the actual fluid field around each particle (e.g.[72])
but this is extremely computationally expensive and can
only be done for a very limited number of particles.

3.1.2. Solid phase
For the solids, we consider flows of inelastic spheres. In a

Lagrangian calculation, the path of each individual particle

is calculated. The calculation of the paths of the particles
consists of two steps: (i) calculation of the particle motion,
and (ii) treatment of the collision of a particle with another
particle.

The motion of individual particles is completely deter-
mined by Newton’s second law of motion. The forces acting
on each particle, next to collisions, are gravity and the trac-
tion force of the fluid phase on the particle. Thus, the mo-
mentum equation describing the acceleration of the particle
is

msas = msg + Vs∇ · ¯̄τg − Vs∇P + β
Vs

εs
(vg − vs) (79)

whereas is the acceleration of one particle,Vs the volume of
one particle,P the local pressure,εs the local solids volume
fraction, ¯̄τg the fluid phase stress tensor, andβ represents
the interphase momentum transfer coefficient.

For describing the collisions of particles, two types of
approaches are possible, the hard-sphere approach and soft-
sphere approach.

3.1.3. Hard-sphere approach
In the hard-sphere approach, collisions between particles

are assumed binary and instantaneous. The velocities of the
particles emerging from a collision are calculated by con-
sidering the balance of linear and angular momenta in the
collision. During a collision, energy is stored in elastic de-
formations associated with both the normal and the tangen-
tial displacements of the contact point relative to the center
of the sphere. Because the release of this energy may af-
fect the rebound significantly, coefficients of restitution as-
sociated with both the normal and tangential components
of the velocity at the point of contact are taken into ac-
count. This model is employed for both particle–particle and
particle–wall collisions.

We consider two colliding spheres with diametersd1 and
d2, massesm1 andm2, and centers located atr1 andr2. The
unit normal along the line joining the centers of two spheres
is n = (r1 − r2)/|r1 − r2|. During the collision, sphere 2
exerts an impulseJ onto sphere 1. Prior to the collision the
spheres have translational velocitiesc1 andc2 and angular
velocitiesω1 andω2. The corresponding velocities after the
collision are denoted by primes. The velocities before and
after collision are related by

m1(c
′
1 − c1) = −m2(c

′
2 − c2) = J (80)

and

2I1
d1
(ω′

1 − ω1) = −2I2
d2
(ω′

2 − ω2) = −n × J (81)

where, for example,I = md2/10 is the moment of inertia
about the center of a homogeneous sphere. In order to de-
termine the impulseJ , the relative velocityq at the point
of contact is defined:

q = (c1 − c2)− (1
2d1ω1 + 1

2d2ω2)× n (82)



B.G.M. van Wachem, A.E. Almstedt / Chemical Engineering Journal 96 (2003) 81–98 93

With the above equations, the contact velocities before and
after the collision are given by

q ′−q = 7

2

(
1

m1
+ 1

m2

)
J − 5

2

(
1

m1
+ 1

m2

)
n(J · n) (83)

The coefficient of restitution,e, characterizes the incomplete
restitution of the normal component ofq:

n · q ′ = −en · q (84)

where 0 ≤ e ≤ 1. In collisions that involve sliding, the
sliding is assumed to be resisted by Coulomb friction and
the tangential and normal components of the impulse are
related by the coefficient of frictionµ:

|n × J | = µ(n · J ) (85)

whereµ ≥ 0. CombiningEqs. (83)–(85)provides an expres-
sion for the impulse transfer in the case when the collision
is sliding:

J (1) = (1+e)(q · n)n+µ(1 + e) cot γ[q − n(q · n)]

1/m1 + 1/m2
(86)

whereγ is the angle betweenq andn and the superscript
1 denotes that the collision involves sliding. With smallγ

the collision is sliding, and asγ increases the sliding stops
when

n × q ′ = −ξn × q (87)

or equivalently

cot γ0 = 2(1 + ξ)

7(1 + e)µ
(88)

where 0≤ ξ ≤ 1 is the tangential coefficient of restitution.
Collisions withγ ≥ γ0 do not involve sliding but sticking,
and in this case the impulse is found by combiningEqs. (83),
(84) and (87):

J (2) = − (1+e)(q · n)n+(2/7)(1 + ξ)[q − n(q · n)]

1/m1 + 1/m2
(89)

In this expression, the superscript 2 denotes the collision
does not involve sliding, but sticking. The three parameters
e, µ, andξ are taken to be constant and independent of the
velocities.

Collisions with a flat wall are treated by considering the
wall as a particle with infinite mass and with the appropriate
wall values ofe, µ, andξ.

Fig. 6 shows a CFD simulation of a gas fluidized bed
employing a hard-sphere model. Various strategies to trans-
late the presence of the two-dimensional “disks” to a
three-dimensional volume fraction are compared to each
other and with experiments. Although these strategies have
been put forward in the literature[69–71], none of them
give satisfying results, and three-dimensional simulations
are advised here.

3.1.4. Soft-sphere approach
In the soft-sphere approach the particle interactions are

modelled through a potential force. This model for contact
forces was first proposed by[73]. The physical motivation
for the soft-sphere approach is that when two particles
collide they actually deform. This deformation, in the
soft-sphere model described by the overlap displacement of
two particles, is the driving parameter of the force model.
The larger the overlap displacement, the larger the repulsive
force. In such a particle–particle interaction, the particles
lose kinetic energy. When two particles slide under the
application of a normal force, a frictional force results. Con-
sidering these forces, the soft-sphere model is composed
of three mechanical elements, i.e. a spring, dashpot, and
friction slider, cf.Fig. 7. The spring simulates the effect of
deformation and the dashpot the damping effect. The slider
simulates the sliding force between two particles. The ef-
fects of these mechanical components on particle motion
appear through the following parameters: the stiffnessk,
the damping coefficientη, and the friction coefficientµ.

The normal component of the forces acting during particle
contact is given by the sum of forces modelled by a spring
and a dashpot,

F n,ij = (−kn,ij δn,ij − ηn,ijvr · n)n (90)

where δ is the normal overlap between particlesi and j,
and vr is the relative velocity between the two particles.
The tangential component of the contact force acting during
particle interaction is given by the sum of forces modelled by
a spring and a dashpot, or a spring and a slider, depending on
the magnitude of the ratio between the normal and tangential
component, which physically indicates if a particle is sliding
or not.

F t,ij =




−kt,ij δ− ηt,ijJ ij , | − kt,ij δ− ηt,ij | ≤ µ|F n,ij |
−µ|F n,ij | J ij

|J ij | , | − kt,ij δ− ηt,ij | > µ|F n,ij |

(91)

whereJ ij is the slip velocity at the point of contact andµ
is the friction coefficient which indicates when the interac-
tion between to particles is considered sliding. The force on
each particle in the system consists out of the above nor-
mal and tangential forces caused by the respective particle
overlap.

The stiffness coefficientk and the damping coefficientη
may be related to physical particle properties by means of
Hertzian contact theory[25] and the displacement theory of
Mindlin and Deresiewicz[74].

The time-step which can be taken in hard-sphere collision
dynamics is governed by the successive time between col-
lisions. In dense systems this time-step may be very small,
leading to very long computational times. The time-step in
soft-sphere collision dynamics is governed by the stiffness of
the normal and tangential forces. Unfortunately, the Hertzian
contact theory predicts such high stiffness that in practical
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Fig. 6. Ten snapshots of a visual representation of the location of the particles at equidistant times (given at the bottom of the series in ‘s’) at a superficial
gas velocity ofU = 0.9 m/s. The three series on the top are simulations with different strategies to translate the presence of the two-dimensional particles
to a three-dimensional volume fraction, and the series at the bottom is an experimental result. For details, see[71].

cases this also leads to very small possible time-steps in
denser suspensions. Tsuji et al.[25] have suggested to use
a lower value for the stiffness coefficient. According to
[25,75,76], the physical impact of this is low, but the exact
meaning or limits of this are unknown.

Spring

Dash-pot
Slider

Fig. 7. A spring–damper–dashpot system to model particle contact.

4. Interface tracking methods

When studying the behaviour of a relatively small number
of interfaces, for instance to study a few droplets or bubbles
in a fluid–fluid flow, methods which track the location of the
interface can be applied. One of the most well-known meth-
ods is the volume-of-fluid method[26]. In the VOF method,
the fluid location is recorded by employing a volume-of-fluid
function, or color function, which is defined as unity within
the fluid regions and zero elsewhere, hence representing the
local volume fraction of one of the phases. In practical nu-
merical simulations employing a VOF algorithm, this func-
tion is unity in computational cells occupied completely by
fluid of phase 1, zero in regions occupied completely by
phase 2, and a value between these limits in cells which
contain a free surface. In the VOF algorithm, the color func-
tion is discontinuous over the interface. In the closely re-
lated level-set algorithm, a color function is also employed,
but this function is continuous and having no direct phys-
ical meaning. The local volume fraction is translated from
the local value or gradient of the color function.
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An advantage of the level-set algorithm is its simplicity
to compute derivatives of the color function, required for in-
stance to calculate the curvature of the surface. A disadvan-
tage of this approach, is that the numerical representation of
the transport equation to determine the values of the color
function is prone to numerical error and leads to a loss or
gain of mass when calculating the local volume fractions.
Successful implementations of the level-set methods have
been demonstrated, for instance, by[27,28]. However, sim-
ulations of gas/liquid systems using this method have not
been validated experimentally yet.

In VOF methods, the color function is a semi-discontinuous
function, facilitating the calculation of the properties of
each of the phases and making it possible to present an

Fig. 8. The simulation of a droplet falling upon a liquid layer in a box with hydrophobic walls. Units are in metre. For details, see[30].

accurate numerical scheme for solving the color transport
equation. However, the accurate calculation of the curvature
of the interface, by determining the derivative of the color
function, is difficult from a numerical point of view.

Recently, significant progress has been made in the nu-
merics and application of the VOF and level-set algorithms,
e.g.[77,78]. However, there is very little experimental vali-
dation to verify VOF or level-set simulation results. More-
over, when employing the VOF algorithm, it is still difficult
to obtain a good estimate of the curvature of the free surface.

A separate class of methods are the so-called front track-
ing methods[79,31] where fictitious particles are placed
along the interface. The particles move with the fluid and the
interface is reconstructed from the location of the particles.
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The results are reported to be accurate, but expensive. Also,
the reconstruction of the interface can be troublesome, es-
pecially when break-up or coalescence of the interface oc-
curs. Then, this method needs to be combined with another
method to produce accurate results[31].

All interface tracking methods consider two separate,
incompressible fluid phases. The two phases are separated
by a reconstructed interface, from some color function or
another Lagrangian representation of the interface. The
Navier–Stokes equation for the incompressible fluid phases
reads

ρ
∂u

∂t
+ ρ∇(uu) = −∇P + ∇ · ¯̄τ + ρg + S (92)

with the continuity equation for an incompressible fluid,

∇ · u = 0 (93)

whereρ is the density of the local fluid,P the local pressure,
S the surface tension,̄̄τ the viscous stress tensor, andu the
velocity field. The velocity field holds both the liquid and
the gas velocity. Viscosity and density are assumed constant
in each of the phases, but may vary from phase to phase,
with valuesρi andµi for phasei.

In the standard VOF or set-level methods, a transport
equation to determine the evolution of the color function is
solved[26]

∂ξ

∂t
+ u · ∇ξ = 0 (94)

in whichξ is represented as a color function, denoting either
phase 1 or phase 2. In the level-set method the scalarξ is
a smooth function, and in the VOF methodξ represents the
local volume fraction of phase 1.

The first VOF type approach was suggested by[26]. Al-
though this scheme is still often applied, it performs badly
on the Rudman translation test[80], in which the fluid is
translated diagonally over the mesh, and the Rider–Kothe
reversed single vortex test[81], in which the fluid is con-
servedly rotated. Also other piecewise constant schemes
(e.g.[82]) show a large amount of smearing of the interface
and a violation of the conservation of each of the phases
[77]. The application of so-called surface sharpening mod-
els, as present in some commercial CFD codes, can some-
what prevent the smearing of the interface.

Piecewise linear schemes are able to track a linear surface,
including its orientation. Youngs’s VOF method[83] and
the stream scheme[84] are examples of these. This piece-
wise linear profile obtained from these methods more closely
represents the actual interface geometry. These schemes are
much more complex then piecewise constant schemes, espe-
cially in three dimensions, but they have been shown to be
significantly more accurate in numerical tests[30,80,81,84].
An example of a falling and colliding droplet calculated with
a Lagrangian piecewise linear method is shown inFig. 8.

5. Discussion and conclusion

This article provides an overview of physical models and
closures employed for computational fluid dynamic predic-
tions of multiphase flows. A separate description is given
of the Eulerian framework and the Lagrangian framework.
Also, a separate class of multiphase CFD models are dis-
cussed, namely the interface tracking methods.

Concerning the Eulerian framework, we have compared
the different formulations for fluid–fluid flow and fluid–solid
flow. The differences between these formulations lie in the
fact that the points inside one particle are fully correlated to
each other unlike in a fluid droplet or bubble. For applica-
tions where the gradient of the volume fraction is expected
to be small, the differences are minor. However, when the
gradient of the volume fraction plays an important role, for
instance in cluster formation in dilute flows, it is believed
that the two formulations will quantitatively differ.

A number of important closures are required in the Eu-
lerian framework for fluid–fluid flow. These are often not
accurate at high dispersed phase volume fractions. On some
of the closures, there is even a dispute on their formulation,
while others are difficult to implement numerically.

For the fluid–solid Eulerian closure models this article
explains the kinetic theory starting, from first principles by
deriving the Boltzmann and Enskog equations. The resulting
equations give a powerful basis to implement further closure
models, for example, for fluid phase turbulence interactions
with the particles. A particle collision model is employed
taking into account the inelastic nature of particles, but ne-
glecting the particle rotation. The probability correlation be-
tween two colliding particles due to the flow of the fluid is
neglected, but it is expected that this is an important phe-
nomenon, especially in dilute flows where the fluid phase
plays a dominant role. The final closures arising from the
kinetic theory of granular flow are presented, which have
been used with a fair amount of success in fluid–solid calcu-
lations. Also, a short discussion is given of physical features
arising from dilute and dense flows.

In the Lagrangian framework, two common methods are
used in fluid–solid modelling: i.e. the hard-sphere approach
and the soft-sphere approach. In the hard-sphere approach,
particle collisions are assumed binary and instantaneous, like
the collision between to billiard balls. This might be an ap-
propriate model for dilute flows, but for dense flows colli-
sions are far from binary and instantaneous. An alternative to
the hard-sphere approach, is the soft-sphere approach, where
particles can overlap and particle interactions can be en-
during. This is modelled by a slider–spring–dashpot model,
with associated friction, spring, and damping coefficients.
When employing physical values for these coefficients, un-
fortunately, the equations become stiff and numerically hard
to solve.

Interface tracking methods, of which the volume-of-fluid
model is the most common in multiphase flow, can be
employed to study the behaviour of a small number of
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interfaces. The idea behind these interface tracking methods
is that the same set of equations is solved for predicting the
evolution of both fluid phases, the Navier–Stokes equations.
Next to solving the Navier–Stokes equations, with a viscos-
ity and density which can locally vary due to the local fluid,
an equation for the interphase is solved. There are differ-
ent ways formulating and solving this equation. Interface
tracking methods can be used with a reasonable degree of
success, depending upon the problem, the type of interface
method, and the accuracy of the underlying numerics.

From this review it has hopefully become apparent that
the application of multiphase CFD is very promising but
requires further development.
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